Advertisement

ZDM

, Volume 50, Issue 7, pp 1281–1294 | Cite as

Modeling and linking the Poisson and exponential distributions

  • Stephanie Budgett
  • Maxine Pfannkuch
Original Article

Abstract

Randomness and distribution are important concepts underpinning the ability to think and reason probabilistically. Traditional approaches to teaching the Poisson distribution focus on mathematical definitions and formulae which obscure the randomness intrinsic in this process. Advances in technology have made it possible for students learning about probability to model the Poisson process. In this paper we explore the reasoning of six introductory probability students as they interacted with a prototype software designed to visibilize randomness, and to make transparent the link between the Poisson and exponential distributions. We focus on a task involving both real data and simulated data. Our findings highlight the fact that the tool and tasks seem to help students’ understanding of the link between the Poisson and exponential distributions, and to gain a deeper appreciation of distribution and randomness.

Keywords

Modeling Simulation Poisson process Distribution Randomness 

Notes

Acknowledgements

This work is supported by a grant from the Teaching and Learning Research Initiative (tlri.org.nz).

Supplementary material

11858_2018_957_MOESM1_ESM.pdf (289 kb)
Supplementary material 1 (PDF 289 kb)

References

  1. Bakker, A., & Gravemeijer, K. (2004). Learning to reason about distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 147–168). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Barton, D., & Lavery, C. (2012). Sigma statistics: NCEA level 3. Auckland: Pearson.Google Scholar
  3. Batanero, C., Chernoff, E., Engel, J., Lee, H., & Sanchez, E. (2016). Research on teaching and learning probability. In Proceedings of topic study group 14 at the 13th international conference on mathematics education (ICME) (pp. 1–33). Hamburg, Germany.  https://doi.org/10.1007/978-3-319-31625-3_1.Google Scholar
  4. Biehler, R. (1991). Computers in probability education. In R. Kapadia & M. Borovnick (Eds.), Chance encounters: Probability in education (pp. 169–211). Boston: Kluwer Academic Publishers.CrossRefGoogle Scholar
  5. Blitzstein, J. K., & Hwang, J. (2014). Introduction to probability. New York: CRC Press.CrossRefGoogle Scholar
  6. Budgett, S., Pfannkuch, M., Regan, M., & Wild, C. J. (2013). Dynamic visualizations and the randomization test. Technology Innovations in Statistics Education, 7(2), 1–21.Google Scholar
  7. Chance, B., Ben-Zvi, D., Garfield, J., & Medina, E. (2007). The role of technology in improving student learning of statistics. Technology Innovations in Statistics Education, 1(1), 1–26.Google Scholar
  8. Chance, B., del Mas, R., & Garfield, J. (2004). Reasoning about sampling distributions. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 295–323). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  9. Chaput, B., Girard, J. C., & Henry, M. (2011). Frequentist approach: Modeling and simulation in statistics and probability teaching. In C. Batanero, G. Burrill & C. Reading (Eds.), Teaching statistics in school mathematics - Challenges for teachers and teacher education. A joint ICMI/IASE study: The 18th ICMI Study (pp. 85–95). New York: Springer.CrossRefGoogle Scholar
  10. Chernoff, E. J., & Sriraman, B. (Eds.). (2014). Probabilistic thinking: Presenting plural perspectives. Dordrecht: Springer.Google Scholar
  11. Chu, S. (2003). Using soccer goals to motivate Poisson process. INFORMS Transactions on Education, 3(2), 64–70.CrossRefGoogle Scholar
  12. Cobb, G., & Moore, D. (1997). Mathematics, statistics and teaching. The American Mathematical Monthly, 104(9), 801–823.CrossRefGoogle Scholar
  13. Cobb, P., & McClain, K. (2004). Principles of instructional design for supporting the development of students’ statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 375–396). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  14. Eichler, A., & Vogel, M. (2014). Three approaches for modelling situations with randomness. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 75–99). Dordrecht: Springer.CrossRefGoogle Scholar
  15. English, L. D., & Watson, J. M. (2016). Development of probabilistic understanding in fourth grade. Journal for Research in Mathematics Education, 47(1), 28–62.CrossRefGoogle Scholar
  16. Garfield, J., delMas, R., & Zieffler, A. (2012). Developing statistical modelers and thinkers in an introductory, tertiary-level statistics course. ZDM - International Journal on Mathematics Education, 44(7), 883–898.CrossRefGoogle Scholar
  17. Johnson, R. W. (2017). Discovering patterns in interarrival data. Teaching Statistics, 39(2), 42–46.CrossRefGoogle Scholar
  18. Johnston-Wilder, P., & Pratt, D. (2007). The relationship between local and global perspectives on randomness. In D. Pitta & G. Philippou (Eds.), Proceedings of the fifth European conference on research in mathematics education. Larnaca: ERME.Google Scholar
  19. Kahneman, D. (2011). Thinking, fast and slow. New York: Allen Lane.Google Scholar
  20. Kazak, S., Fujita, T., & Wegerif, R. (2016). Students’ informal inference about the binomial distribution of “bunny hops”: A dialogic perspective. Statistics Education Research Journal, 15(2), 46–61.Google Scholar
  21. Konold, C., Higgins, T., Russell, S. J., & Khalil, K. (2015). Data seen through different lenses. Educational Studies in Mathematics, 88(3), 305–325.CrossRefGoogle Scholar
  22. Konold, C., & Kazak, S. (2008). Reconnecting data and chance. Technology Innovations in Statistics Education, 2(1). http://repositories.cdlib.org/uclastat/cts/tise/vol2/iss1/art1/
  23. Konold, C., Madden, S., Pollatsek, A., Pfannkuch, M., Wild, C., Ziedins, I., Finzer, W., Horton, N. J., & Kazak, S. (2011). Conceptual challenges in coordinating theoretical and data-centered estimates of probability. Mathematical Thinking and Learning, 13(1&2), 68–86.CrossRefGoogle Scholar
  24. Lane, D. M., & Peres, S. C. (2006). Interactive simulations in the teaching of statistics: promise and pitfalls. In A. Rossman & B. Chance (Eds.), Proceedings of the seventh international conference on teaching statistics, Salvador, Brazil. Voorburg: International Statistical Institute..Google Scholar
  25. Lee, H. S., & Lee, J. T. (2009). Reasoning about probabilistic phenomena: Lessons learned and applied in software design. Technology Innovations in Statistics Education, 3(2), 1–22.Google Scholar
  26. MacGillivray, H. (2006). Using data, student experiences and collaboration in developing probabilistic reasoning at the introductory tertiary level. In A. Rossman & B. Chance (Eds.), Proceedings of the 7th international conference on teaching statistics, Salvador, Brazil. Voorburg: International Statistical Institute.Google Scholar
  27. Makar, K., & Ben-Zvi, D. (2011). The role of context in developing reasoning about informal statistical inference. Mathematical Thinking and Learning, 4(3), 1–4.CrossRefGoogle Scholar
  28. Martignon, L., & Krauss, S. (2009). Hands-on activities for fourth graders: A tool box for decision-making and reckoning with risk. International Electronic Journal of Mathematics Education, 4(3), 117–148.Google Scholar
  29. Nickerson, R. S. (2002). The production and perception of randomness. Psychological Review, 109(2), 330–357.CrossRefGoogle Scholar
  30. Patton, M. Q. (2015). Qualitative research and evaluation methods. London: Sage.Google Scholar
  31. Peres, S. C., Lane, D. M., & Griggs, K. R. (2010). Using simulations for active learning: the query-first method in practice. In C. Reading (Ed.), Data and context in statistics education: Towards an evidence-based society. Proceedings of the eighth international conference on teaching statistics, Ljubljana, Slovenia. Voorburg: International Statistical Institute.Google Scholar
  32. Pfannkuch, M., & Budgett, S. (2016). Markov processes: Exploring the use of dynamic visualizations to enhance student understanding. Journal of Statistics Education, 24(2), 63–73.  https://doi.org/10.1080/10691898.2016.1207404.CrossRefGoogle Scholar
  33. Pfannkuch, M., Budgett, S., Fewster, R., Fitch, M., Pattenwise, S., Wild, C., & Ziedins, I. (2016). Probability modelling and thinking: What can we learn from practice? Statistics Education Research Journal, 15(2), 11–37.Google Scholar
  34. Pfannkuch, M., & Ziedins, I. (2014). A modelling perspective on probability. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 101–116). New York: Springer.CrossRefGoogle Scholar
  35. Poisson, S. D. (1837). Recherches sur la probabilité des jugements en matiere criminelle et en matière civile, précédées des règles générales du calcul des probabilités. Paris: Bachelier.Google Scholar
  36. Pratt, D. (2000). Making sense of the total of two dice. Journal for Research in Mathematics Education, 31(5), 602–625.CrossRefGoogle Scholar
  37. Pratt, D. (2011). Re-connecting probability and reasoning from data in secondary school teaching. In Proceedings of the 58th international statistical institute world statistics congress (pp. 890–899). The Hague, The Netherlands: International Statistical Institute.Google Scholar
  38. Ross, S. M. (2010). Introduction to probability models. Burlington: Academic Press.Google Scholar
  39. Schoenfeld, A. (2007). Method. In F. Lester (Ed.), Second handbook of research on the teaching and learning of mathematics (pp. 96–107). Charlotte: Information Age Publishers.Google Scholar
  40. Shaughnessy, J. M. (2014). Commentary on the chapters on probability from a stochastic perspective. In E. J. Chernoff & B. Sriraman (Eds.), Probabilistic thinking: Presenting plural perspectives (pp. 481–489). Dordrecht: Springer.  https://doi.org/10.1007/978-94-007-7155-0_25.CrossRefGoogle Scholar
  41. Taleb, N. N. (2005). Fooled by randomness. New York: Random House.Google Scholar
  42. Thomas, M. O. (2008). Conceptual representations and versatile mathematical thinking. In Proceedings of the tenth international congress in mathematics education (pp. 1–18). Copenhagen, Denmark.Google Scholar
  43. von Bortkewitsch, L. (1898). Das Gesetz der Kleinen Zahlen. Leipzig: Teubner.Google Scholar

Copyright information

© FIZ Karlsruhe 2018

Authors and Affiliations

  1. 1.The University of AucklandAucklandNew Zealand

Personalised recommendations