Skip to main content

Self-regulation capacity of middle school students in mathematics

Abstract

Considering that learning belongs primarily to the student, student self-regulation capacity is essential to ensure mathematics learning. Poor self-regulation limits students’ mathematical performance and their ability to participate fully in classroom discourse. By enhancing self-regulation it is possible to improve students’ equitable participation in mathematics. In this paper, we present a study aimed at understanding the development of the self-regulation capacity of middle school students in mathematics, throughout an observed teaching intervention, in which is developed regular work to promote internalisation of the assessment criteria, whole-class mathematics discussions regulated by social norms and the assessment criteria, and written self-assessments tasks. Following qualitative research methodology, data collection sources were classroom observation, interviews, questionnaires, and collection of documents. Data analysis had a strong interpretive foundation, making use of a system of categories defined during the process, based on the theoretical framework. Throughout the teaching intervention, students walked towards the internalisation of the assessment criteria, improved their performance in collective discussions, and developed their self-regulation capacity, following an individualized and non-linear pathway. Although equity concerns were partially addressed, the development of self-regulation capacity was not consistent in all students. This suggests that more could have be done to provide quality mathematics education for each and every student.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Allal, L. (2010). Assessment and the regulation of learning. In P. Peterson, E. Baker & B. McGaw (Eds.), International encyclopaedia of education (Vol. 3, pp. 348–352). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Andrade, H. (2013). Classroom assessment in the context of learning theory and research. In J. McMillan (Ed.), The SAGE handbook of research on classroom assessment (pp. 17–34). Thousand Oaks: Sage Publications.

    Chapter  Google Scholar 

  • Andrade, H., & Valtcheva, A. (2009). Promoting learning and achievement through self-assessment. Theory Into Practice, 48(1), 12–19. https://doi.org/10.1080/00405840802577544.

    Article  Google Scholar 

  • Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM - The International Journal on Mathematics Education, 45, 797–810. https://doi.org/10.1007/s11858-013-0506-6.

    Article  Google Scholar 

  • Black, P., & Wiliam, D. (1998). Assessment and classroom learning. Assessment in Education, 5, 7–71.

    Article  Google Scholar 

  • Brookhart, S., Andolina, M., Zuza, M., & Furman, R. (2004). Minute math: An action research study of student self-assessment. Educational Studies in Mathematics, 57, 213–227. https://doi.org/10.1023/B:EDUC.0000049293.55249.d4.

    Article  Google Scholar 

  • Brown, G., & Harris, L. (2013). Student self-assessment. In J. McMillan (Ed.), The SAGE handbook of research on classroom assessment (pp. 367–393). Thousand Oaks: Sage.

    Chapter  Google Scholar 

  • Brown, G., & Harris, L. (2014). The future of self-assessment in classroom practice: Reframing self-assessment as a core competency. Frontline Learning Research, 2(1), 22–30. https://doi.org/10.14786/flr.v2i1.24.

    Google Scholar 

  • Butler, R. (2011). Are positive illusions about academic competence always adaptive, under all circumstances: New results and future directions? International Journal of Educational Research, 50(4), 251–256. https://doi.org/10.1016/j.ijer.2011.08.006.

    Article  Google Scholar 

  • Cohors-Fresenborg, E., Pundsack, F., Sjuts, J., & Sommer, N. (2010). The role of metacognitive monitoring in explaining differences in mathematics achievement. ZDM - The International Journal on Mathematics Education, 42, 231–244. https://doi.org/10.1007/s11858-010-0237-x.

    Article  Google Scholar 

  • Colbert, P., & Cumming, J. (2014). Enabling all students to learn through assessment. In C. Wyatt-Smith, V. Klenowski & P. Colbert (Eds.), Designing assessment for quality learning (pp. 211–231). Berlin: Springer.

    Chapter  Google Scholar 

  • Creswell, J. (2012). Educational research. Planning, conducting and evaluating quantitative and qualitative research (4th edn.). Boston: Pearson Education.

    Google Scholar 

  • Field, S., Kuczera, M., & Pont, B. (2007). No more failures: Ten steps to equity in education. Paris: OECD.

    Book  Google Scholar 

  • Fontana, A., & Frey, J. H. (1994). Interviewing: The art of science. In N. Denzin & Y. Lincoln (Eds.), Handbook of qualitative research (pp. 361–374). Thousand Oaks: Sage.

    Google Scholar 

  • Hattie, J., & Timperley, H. (2007). The power of feedback. Review of Educational Research, 77(1), 81–112. https://doi.org/10.3102/003465430298487.

    Article  Google Scholar 

  • Jurdak, M. (2014). Socio-economic and cultural mediators of mathematics achievement and between-school equity in mathematics education at the global level. ZDM - The International Journal on Mathematics Education, 46, 1025–1037. https://doi.org/10.1007/s11858-014-0593-z.

    Article  Google Scholar 

  • Levin, B. (2004). Approaches to equity in policy for lifelong learning. Paper presented at the American Education Research Association annual meeting. San Diego, May.

  • Mathematical Sciences Education Board & National Research Council [MSEB/NRC] (1993). Measuring what counts: A conceptual guide for mathematics assessment (pp. 201–223). Washington: National Academy Press.

    Google Scholar 

  • Montenegro, E., & Jankowski, N. (2017). Equity and assessment: Moving towards culturally responsive assessment (Occasional Paper No. 29). Urbana: University of Illinois and Indiana University, National Institute for Learning Outcomes Assessment.

    Google Scholar 

  • NCTM (2014). Principles to actions. Ensuring mathematical success for all. Reston: NCTM.

    Google Scholar 

  • Nunziati, G. (1990). Pour construire un dispositif d´évaluation formatrice. [To build a formative assessment system]. Cahiers Pédagogiques, 280, 47–62.

    Google Scholar 

  • OECD (2012). Equity and quality in education: Supporting disadvantaged students and schools. Paris: OECD Publishing.

    Google Scholar 

  • Panadero, E., & Alonso-Tapia, J. (2013). Self-assessment: theoretical and practical connotations. Electronic Journal of Research in Educational Psychology, 11(2), 551–576. https://doi.org/10.14204/ejrep.30.12200.

    Google Scholar 

  • Sadler, R. (1989). Formative assessment and the design of instructional systems. Instructional Science, 18, 119–144.

    Article  Google Scholar 

  • Santos, L., & Cai, J. (2016). Curriculum and assessment. In A. Gutiérrez, G. Leder & P. Boero (Eds.), The second handbook in the psychology of mathematics education (pp. 153–185). Rotterdam: Sense Publishers.

    Google Scholar 

  • Santos, L., & Semana, S. (2015). Developing mathematics written communication through expository writing supported by assessment strategies. Educational Studies in Mathematics, 88(1), 65–87. https://doi.org/10.1007/s10649-014-9557-z.

    Article  Google Scholar 

  • Smith, J., & Smith, L. (2014). Developing assessment tasks. In C. Wyatt-Smith, V. Klenowski & P. Colbert (Eds.), Designing assessment for quality learning (pp. 123–136). Berlin: Springer.

    Chapter  Google Scholar 

  • UNESCO (2012). Challenges in basic mathematics education. Paris: United Nations Educational, Scientific and Cultural Organization. (http://unesdoc.unesco.org/images/0019/001917/191776e.pdf).

  • Valero, P. (2007). A socio-political look at equity in the school organization of mathematics education. ZDM - The International Journal on Mathematics Education, 39, 225–233. https://doi.org/10.1007/s11858-007-0027-2.

    Article  Google Scholar 

  • Wiliam, D. (2007). Keeping learning on track: Formative assessment and the regulation of learning. In F. K. Lester Jr.. (Ed.), Second handbook of mathematics teaching and learning (pp. 1053–1098). Greenwich: Information Age Publishing.

    Google Scholar 

  • Zimmerman, B. (2011). Motivational sources and outcomes of self-regulated learning and performance. In B. Zimmerman & D. Schunk (Eds.), Handbook of self-regulation of learning and performance (pp. 49–64). New York: Routledge.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonor Santos.

Appendix 1

Appendix 1

See Table 10.

Table 10 Assessment criteria

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Semana, S., Santos, L. Self-regulation capacity of middle school students in mathematics. ZDM Mathematics Education 50, 743–755 (2018). https://doi.org/10.1007/s11858-018-0954-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0954-0

Keywords

  • Mathematics learning
  • Self-regulation
  • Self-assessment
  • Equity
  • Assessment criteria
  • Whole-class discussions