Skip to main content
Log in

Mathematical modelling with digital tools—a quantitative study on mathematising with dynamic geometry software

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The use of digital tools in mathematics lessons has recently gained in significance, especially because of ongoing technical developments. Particularly in the context of mathematical modelling, digital tools have become more and more important. They have been deployed for many years and are currently being intensively discussed from a didactical point of view. This paper discusses to what extent modelling processes using digital tools can be described theoretically, and surveys significant empirical findings in this field. Based on a quantitative control study with 709 students, we especially investigated the competence of mathematising. We compared the competence development of a test-group that worked with digital tools, to a control-group that worked with paper and pencil on the same tasks during a four-lesson intervention on geometric modelling tasks. We find a comparable improvement of mathematising in both groups. This competence development was also investigated in relation to the influence of attitudes towards the software used and program-related self-efficacy. We find program-related self-efficacy, but not attitudes towards the used software, to be a significant predictor of the gain in competency. These results are discussed with respect to different performance studies examining the use of dynamic geometry software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adan, I. J. B. F., Perrenet, J. C., & Sterk, H. J. M. (2005). De kracht van wiskundig modelleren. Eindhoven: Technische Universiteit Eindhoven.

    Google Scholar 

  • Agarwal, R., Sambamurthy, V., & Stair, R. M. (2000). Research report: The evolving relationship between general and specific computer self-efficacy—An empirical assessment. Information Systems Research, 11(4), 418–430.

    Article  Google Scholar 

  • Arzarello, F., Ferrara, F., & Robutti, O. (2012). Mathematical modelling with technology: The role of dynamic representations. Teaching Mathematics and Its Applications, 31(1), 20–30.

    Article  Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Barzel, B., Hußmann, S., & Leuders, T. (2005). Computer, Internet & Co. im Mathematikunterricht. Berlin: Cornelsen Scriptor.

    Google Scholar 

  • Blum, W. (2015). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education—Intellectual and attitudinal challenges (pp. 73–96). New York: Springer.

    Google Scholar 

  • Blum, W., Alsina, C., Biembengut, M. S., Bouleau, N., Confrey, J., Galbraith, P., & Henn, H.-W. (2002). ICMI study 14: Applications and modelling in mathematics education discussion document. Educational Studies in Mathematics, 51, 149–171.

    Article  Google Scholar 

  • Blum, W., & Leiß, D. (2007). How do students and teachers deal with mathematical modelling problems? The example sugarloaf and the DISUM project. In C. Haines, P. L. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling (ICTMA 12): Education, engineering and economics (pp. 222–231). Chichester: Horwood.

    Chapter  Google Scholar 

  • Borba, M. C., Clarkson, P., & Gadanidis, G. (2013). Learning with the use of the internet. In · M. A. K. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick & F. K.-S. Leung (Eds.), Third international handbook of mathematics education. New York: Springer.

    Google Scholar 

  • Borba, M. C., & Villarreal, M. (2005). Humans-with-media and the reorganization of mathematical thinking. New York: Springer.

    Google Scholar 

  • Borromeo Ferri, R. (2011). Wege zur Innenwelt des mathematischen Modellierens. Kognitive Analysen zu Modellierungsprozessen im Mathematikunterricht. Wiesbaden: Vieweg + Teubner.

    Book  Google Scholar 

  • Brosnan, M. (1998). The impact of computer anxiety and self-efficacy upon performance. Journal of Computer Assisted Learning, 14, 223–234.

    Article  Google Scholar 

  • Bruder, R. (2008). Evaluationsergebnisse des Projektes TIM. Projektbericht. https://mathematik.bildung-rp.de/fileadmin/user_upload/mathematik.bildung-rp.de/Sekundarstufe_I/Materialien/pdf/TIM-Berichtsteil.pdf. Accessed 27 March 2017.

  • Bühner, M. (2011). Einführung in die Test- und Fragebogenkonstruktion. München: Pearson.

    Google Scholar 

  • Burrill, G., Allison, J., Breaux, G., Kastberg, S., Leatheam, K., & Sanchez, W. (2002). Handheld graphing technology in secondary mathematics: Research findings and implications for classroom practice. Dallas: Texas Instruments.

    Google Scholar 

  • Carreira, S., Amado, N., & Canário, F. (2013). Students’ modelling of linear functions: How GeoGebra stimulates a geometrical approach. In B. Ubuz et al. (Eds.) CERME 8. Proceedings of the eighth congress of the European Society of Research in Mathematics Education (pp. 1031–1040), Antalya, Turkey. Ankara: Middle East Technical University.

    Google Scholar 

  • Cassidy, S., & Eachus, P. (2002). Developing the computer user self-efficacy (CUSE) scale: Investigating the relation between computer self-efficacy, gender and experience with computers. Journal of Educational Computing Research, 26(2), 133–153.

    Article  Google Scholar 

  • Chan, K. K., & Leung, S. W. (2014). Dynamic geometry software improves mathematical achievement: Systematic review and meta-analysis. Journal of Educational Computing Research, 51(3), 311–325.

    Article  Google Scholar 

  • Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quart, 19, 189–211.

    Article  Google Scholar 

  • Confrey, J., & Maloney, A. (2007). A theory of mathematical modelling in technological settings. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 57–68). New York: Springer.

    Chapter  Google Scholar 

  • Daher, W., & Shahbari, A. (2015). Pre-Service teachers’ modelling processes through engagement with model eliciting activities with a technological tool. International Journal of Science and Mathematics Education, 13(Suppl 1), 25–46.

    Article  Google Scholar 

  • Dix, K. (1999). Enhanced mathematics learning: Does technology make a difference? Mathematics Education Research Group of Australasia (MERGA), 22, 192–199.

    Google Scholar 

  • Doerr, H. M., & Zangor, R. (2000). Creating meaning for and with the graphing calculator. Educational Studies in Mathematics, 41, 143–163.

    Article  Google Scholar 

  • Drijvers, P. (2003). Algebra on screen, on paper, and in the mind. In J. T. Fey, A. Cuoco, C. Kieran, L. McMullin & R. M. Zbiek (Eds.), Computer algebra systems in secondary school mathematics education (pp. 241–268). Reston, VA: National Council of Teachers of Mathematics.

    Google Scholar 

  • Ellington, A. J. (2003). A meta-analysis of the effects of calculators on students’ achievement and attitude levels in precollege mathematics classes. Journal for Research in Mathematics Education, 34(5), 433–463.

    Article  Google Scholar 

  • Ellington, A. J. (2006). The effects of non-CAS graphing calculators on student achievement and attitude levels in mathematics: A meta-analysis. School Science and Mathematics, 106(1), 16–26.

    Article  Google Scholar 

  • English, L. D., Ärlebäck, J. B., & Mousoulides, N. (2016). Reflections on progress in mathematical modelling research. In Á. Gutiérrez, G. C. Leder & P. Boero (Eds.), The second handbook of research on the psychology of mathematics education (pp. 383–413). Rotterdam: Sense Publishers.

    Chapter  Google Scholar 

  • Galbraith, P., & Stillman, G. (2006). A framework for identifying student blockages during transitions in the modelling process. Zentralblatt für Didaktik der Mathematik, 38(2), 143–162.

    Article  Google Scholar 

  • Gallegos, R. R., & Rivera, S. Q. (2015). Developing modelling competencies through the use of technology. In G. A. Stillman, W. Blum & M. S. Biembengut (Eds.), Mathematical modelling in education research and practice (pp. 443–452). Cham: Springer.

    Chapter  Google Scholar 

  • Gawlick, T. (2002). On dynamic geometry software in the regular classroom. Zentralblatt für Didaktik der Mathematik, 34(3), 85–92.

    Article  Google Scholar 

  • Geiger, V. (2011). Factors affecting teachers’ adoption of innovative practices with technology and mathematical modelling. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 305–314). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Gellert, U., Jablonka, E., & Keitel, C. (2001). Mathematical literacy and common sense in mathematics education. In B. Atweh, H. Forgasz & B. Nebres (Eds.), Sociocultural research on mathematics education: An international perspective (pp. 57–73). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Gist, M., Schwoerer, C., & Rosen, B. (1989). Effects of alternative training methods on self-efficacy and performance in computer software training. Journal of Applied Psychology, 74(6), 884–891.

    Article  Google Scholar 

  • Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modelling—Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling, ICTMA 14 (pp. 301–304). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Greefrath, G., & Siller, H.-S. (2017). Modelling and simulation with the help of digital tools. In G. A. Stillman, W. Blum & G. Kaiser (Eds.), Mathematical modelling and applications, ICTMA 17 (pp. 529–539). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Greefrath, G., Siller, H.-S., & Weitendorf, J. (2011). Modelling considering the influence of technology. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillmann (Eds.), Trends in teaching and learning of mathematical modelling (pp. 315–329). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Hartig, J., & Kühnbach, O. (2006). Schätzung von Veränderung mit “plausible values” in mehrdimensionalen Rasch-Modellen. In A. Ittel & H. Merkens (Eds.), Veränderungsmessung und Längsschnittstudien in der empirischen Erziehungswissenschaft (pp. 27–44). Wiesbaden: Verlag für Sozialwissenschaften.

    Chapter  Google Scholar 

  • Haug, R. (2012). Problemlösen lernen mit digitalen Medien. Förderung grundlegender Problemlösetechniken durch den Einsatz dynamischer Werkzeuge. Wiesbaden: Vieweg + Teubner Research.

    Book  Google Scholar 

  • Henn, H.-W. (1998). The impact of computer algebra systems on modelling activities. In P. Galbraith, W. Blum, G. Booker & I. Huntley (Eds.), Mathematical modelling: Teaching and assessing in a technology rich world (pp. 115–123). Chichester: Horwood.

    Google Scholar 

  • Henn, H.-W. (2007). Modelling pedagogy—Overview. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 321–324). New York: Springer.

    Chapter  Google Scholar 

  • Hertleif, C. (2017). Dynamic geometry software in mathematical modelling: About the role of programme-related self-efficacy and attitudes towards learning with the software. In G. Aldon, & J. Trgalová (Eds.), Proceedings of the 13th international conference on technology in mathematics teaching (pp. 124–133). Lyon: École Normale Supérieure.

    Google Scholar 

  • Hertleif, C., & Adamek, C. & Greefrath G. (in press). Assessing sub-competencies of mathematical modelling with the help of item response theory—Presentation of a new test instrument. In G. Stillmann & J. Brown (Eds.), Lines of inquiry in mathematical modelling research in education. New York: Springer.

  • Heugl, H., Klinger, W., & Lechner, J. (1996). Mathematikunterricht mit Computeralgebra- Systemen: Ein didaktisches Lehrerbuch mit Erfahrungen aus dem österreichischen DERIVE- Projekt. Bonn: Addison-Wesley.

    Google Scholar 

  • Hischer, H. (2002). Mathematikunterricht und Neue Medien. Hildesheim: Franzbecker.

    Google Scholar 

  • Igbaria, M., & Iivari, J. (1995). The effects of self-efficacy on computer usage. Omega, 23(6), 587–605.

    Article  Google Scholar 

  • Karsten, R., Mitra, A., & Schmidt, D. (2012). Computer self-efficacy: A meta-analysis. Journal of Organizational and End User Computing, 24(4), 54–80.

    Article  Google Scholar 

  • Maaß, K. (2010). Classification scheme for modelling tasks. Journal für Mathematik-Didaktik, 31(2), 285–311.

    Article  Google Scholar 

  • MacGregor, S. K. (1999). Hypermedia navigation profiles: Cognitive characteristics and information processing strategies. Journal of Educational Computing Research, 20(2), 189–206.

    Article  Google Scholar 

  • Marakas, G. M., Johnson, R. D., & Clay, P. F. (2007). The evolving nature of the computer self-efficacy construct: An empirical investigation of measurement construction, validity, reliability and stability over time. Journal of the Association for Information Systems, 8(1), 16–46.

    Article  Google Scholar 

  • McCoy, L. P. (1991). The effect of geometry tool software on high school geometry achievement. Journal of Computers in Mathematics and Science Teaching, 10(3), 51–57.

    Google Scholar 

  • Moreno-Armella, L., Hegedus, S., & Kaput, J. (2008). From static to dynamic mathematics: Historical and representational perspectives. Educational Studies in Mathematics, 68, 99–111.

    Article  Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. Galbraith, H.-W. Henn & M. Niss. (Eds.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 3–32). New York: Springer.

    Chapter  Google Scholar 

  • Pead, D., Bill, R., & Muller, E. (2007). Uses of technologies in learning mathematics through modelling. In W. Blum et al. (Ed.), Modelling and applications in mathematics education. The 14th ICMI study (pp. 309–318). New York: Springer.

    Chapter  Google Scholar 

  • Pierce, R. (2005). Algebraic insight underpins the use of CAS for modeling. The Montana Mathematics Enthusiast (TMME), 2(2), 107–117.

    Google Scholar 

  • Rajagopal, S., Ismail, Z., Ali, M., & Sulaiman, N. (2015). Attitude of secondary students towards the use of GeoGebra in learning loci in two dimensions. International Education Studies, 8(13), 27–32.

    Article  Google Scholar 

  • Savelsbergh, E. R., Drijvers, P. H. M., van de Giessen, C., Heck, A., Hooyman, K., Kruger, J., Michels, B., Seller, F., & Westra, R. H. V. (2008). Modelleren en computer-modellen in de β -vakken: Advies op verzoek van de gezamenlijke β -vernieuwingscommissies. Utrecht: Freudenthal Instituut voor Didactiek van Wiskunde en Natuurwetenschappen.

    Google Scholar 

  • Schaap, S., Vos, P., & Goedhart, M. (2011). Students overcoming blockages while building a mathematical model: Exploring a framework. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modeling (pp. 137–146). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Siller, H.-St, & Greefrath, G. (2010). Mathematical modelling in class regarding to technology. In V. Durand-Guerrier, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of the sixth congress of the European Society for Research in Mathematics Education (CERME6) (pp. 2136–2145). Lyon: Institut National de Recherche Pédagogique.

    Google Scholar 

  • Simmering, M. J., Posey, C., & Piccoli, G. (2009). Computer self-efficacy and motivation to learn in a self-directed online course. Decision Sciences Journal of Innovative Education, 7(1), 99–121.

    Article  Google Scholar 

  • Spannagel, C., & Bescherer, C. (2009). Computerbezogene Selbstwirksamkeitserwartung in Lehrveranstaltungen mit Computernutzung. Notes on Educational Informatics- Section A: Concepts and Techniques, 5(1), 23–43.

    Google Scholar 

  • Sträßer, R. (2002). Research on dynamic geometry software (DGS)—An introduction. Zentralblatt für Didaktik der Mathematik, 34(3), 65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Greefrath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greefrath, G., Hertleif, C. & Siller, HS. Mathematical modelling with digital tools—a quantitative study on mathematising with dynamic geometry software. ZDM Mathematics Education 50, 233–244 (2018). https://doi.org/10.1007/s11858-018-0924-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0924-6

Keywords

Navigation