Skip to main content
Log in

Impact of professional development involving modelling on teachers and their teaching

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This paper presents an international research study of long-term professional development courses on modelling. It addresses the question of scaling-up professional development. So far, there has been much research on small-scale professional development courses, but we know very little about what it means to scale up such a course and to reach out to large numbers of teachers. Therefore, our study researches the impact of a scaled up professional development course on teachers and their teaching, as perceived by the teachers themselves and their students. The course was designed on an international level for use in 12 countries. The results show that such a course can indeed lead to desired outcomes concerning the teachers and their teaching, and the research therefore adds to our understanding of scaling-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler, J., & Jaworski, B. (2009). Public writing in the field of mathematics teacher education. In R. Even & D. L. Ball (Eds.), The professional education and development of teachers of mathematics–the 15th ICMI study (pp. 249–254). New York: Springer.

    Chapter  Google Scholar 

  • Akker, J. v. d, Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Introducing educational design research. In J. V. D. Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (Vol. 1, pp. 3–7). Oxford: Routledge Chapman & Hall.

    Google Scholar 

  • Alfieri, L., Brooks, P. J., Aldrich, N. J., & Tenenbaum, H. R. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18.

    Article  Google Scholar 

  • Artigue, M., & Blomhøj, M. (2013). Conceptualizing inquiry-based education in mathematics. ZDM Mathematics Education, 45(6), 797–810.

    Article  Google Scholar 

  • Askew, M., Brown, M., Rhodes, V., Johnson, D., & Wiliam, D. (1997). Effective teachers of numeracy. London: Kings College.

    Google Scholar 

  • Barzel, B., & Selter, C. (2015). Die DZLM-Gestaltungsprinzipien für Fortbildungen. Journal für Mathematik-Didaktik, 36(2), 259–284.

    Article  Google Scholar 

  • Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9(4), 469–520.

  • Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss & M. Neubrand (Eds.), Cognitive activation in the mathematics classroom and professional competence of teachers: Results from the COACTIV project (Vol. 8). Berlin: Springer: Mathematics Teacher Education.

    Google Scholar 

  • Baumert, J., Kunter, M., Brunner, M., Krauss, S., Blum, W., & Neubrand, M. (2004). Mathematikunterricht aus Sicht der PISA–Schülerinnen und Schüler und ihrer Lehrkräfte. In P.-K. Deutschland (Ed.), PISA 2003–Der Bildungsstand der Jugendlichen in Deutschland–Ergebnisse des zweiten internationalen Vergleichs (pp. 314–354). Münster: Waxmann.

    Google Scholar 

  • Besser, M., Leiss, D., & Klieme, E. (2015). Wirkung von Lehrerfortbildungen auf Expertise von Lehrkräften zu formativem Assessment im kompetenzorientierten Mathematikunterricht. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 47(2), 110–122.

    Article  Google Scholar 

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. B. Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14 (pp. 15–30). New York: Springer Science & Business Media.

    Chapter  Google Scholar 

  • Blum, W., & Leiss, D. (2005). Modellieren im Unterricht mit der” Tanken"-Aufgabe. mathematik lehren, 128, 18–21.

    Google Scholar 

  • Boaler, J. (2008). Bridging the gap between research and practice: International examples of success. In M. Menghini, F. Furinghetti, L. Giarcardi & F. Arzarella (Eds.), The first century of the International Commission on Mathematics Instruction (1908–2008): Reflecting and shaping the world of mathematics education. Roma: Instituto della Enciclopedia Italiana foundata da Giovanni Treccani.

    Google Scholar 

  • Clarke, D. (1994). Ten key principles from research for the professional development of mathematics teachers. In D. B. Aichele & A. F. Croxford (Eds.), Professional development for teachers of mathematics (pp. 37–48). Reston: NCTM.

    Google Scholar 

  • Clarke, D., & Hollingsworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and teacher education, 18(8), 947–967.

    Article  Google Scholar 

  • Clausen, M. (2002). Unterrichtsqualität: Eine Frage der Perspektive? [Quality of instruction: A matter of persepctive?]. Münster: Waxmann.

    Google Scholar 

  • Coe, R. (2002). It’s the effect size, stupid: what effect size is and why it is important. In Paper presented at the annual conference of the British Educational Research Association, University of Exeter, 12–14 September 2002.

  • De Jong, R., & Westerhof, K. J. (2001). The quality of student ratings of teacher behaviour. Learning Environments Research, 4(1), 51–85.

    Article  Google Scholar 

  • Dorier, J.-L., & García, F. J. (2013). Challenges and opportunities for the implementation of inquiry-based learning in day-to-day teaching. ZDM Mathematics Education, 45(6), 837–849.

    Article  Google Scholar 

  • Dorier, J.-L., & Maass, K. (2014). Inquiry-based mathematics education. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 300–304). Dordrecht: Springer.

    Google Scholar 

  • Engeln, K., Euler, M., & Maass, K. (2013). Inquiry-based learning in mathematics and science: A comparative baseline study of teachers’ beliefs and practices across 12 European countries. ZDM Mathematics Education, 45(6), 823–836.

    Article  Google Scholar 

  • Euler, M. (2011). WP9: Report about the survey on inquiry-based learning and teaching in the European partner countries. PRIMAS: Promoting inquiry-based learning in mathematics and science education across Europe.

  • Guskey, T. R. (2000). Evaluating professional development. Thousand Oaks: Cirwin Press.

    Google Scholar 

  • Hudson, S. B., McMahon, K. C., & Overstreet, C. M. (2002). The 2000 national survey of science and mathematics education: Compendium of tables. Chapel Hill: Horizon Research.

    Google Scholar 

  • Jackson, K., Cobb, P., Wilson, J., Webster, M., Dunlap, C., & Appelgate, M. (2015). Investigating the development of mathematics leaders’ capacity to support teachers’ learning on a large scale. ZDM Mathematics Education, 47(1), 93–104.

    Article  Google Scholar 

  • Kaiser, G., & Schwarz, B. (2010). Authentic modelling problems in mathematics education—Examples and experiences. Journal für Mathematik–Didaktik, 31(1), 51–76.

    Article  Google Scholar 

  • Kaiser, G., Schwarz, B., & Buchholz, N. (2011). Authentic modelling problems in mathematics education. In G. Kaiser, W. Blum, R. B. Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling: ICTMA14 (pp. 591–602). New York: Springer Science & Business Media.

    Chapter  Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. ZDM Mathematics Education, 38(3), 302–310.

    Article  Google Scholar 

  • Krainer, K. (2011). Teachers as stakeholders in mathematics education research. In B. Ubuz (Ed.), Proceedings of the 35th conference of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 47–62). Ankara: Middle East Technical University

    Google Scholar 

  • Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner–Wann gelingt der Rollentausch? Merkmale und Wirkungen wirksamer Lehrerfortbildungen. Schulpädagogik heute, 3(5), 1–17.

    Google Scholar 

  • Loucks-Horsley, S., Stiles, K. E., Mundry, S., Love, N., & Hewson, P. W. (2009). Designing professional development for teachers of science and mathematics. London: Corwin Press.

    Google Scholar 

  • Lüdtke, O., Trautwein, U., Kunter, M., & Baumert, J. (2006). Reliability and agreement of student ratings of the classroom environment: A reanalysis of TIMSS data. Learning Environments Research, 9(3), 215–230.

    Article  Google Scholar 

  • Maass, K. (2004). Mathematisches Modellieren im Unterricht. Hildesheim: Franzbecker.

    Google Scholar 

  • Maass, K. (2007). Modelling in class: What do we want students to learn. In C. Haines, P. Galbraith, W. Blum & S. Khan (Eds.), Mathematical modelling: Education, engineering and economics–ICTMA 12 (pp. 63–78). Chichester: Horwood.

    Chapter  Google Scholar 

  • Maass, K. (2011). How can teachers’ beliefs affect their professional development? ZDM Mathematics Education, 43(4), 573–586.

    Article  Google Scholar 

  • Maass, K., & Artigue, M. (2013). Implementation of inquiry-based learning in day-to-day teaching: a synthesis. ZDM Mathematics Education, 45(6), 779–795.

    Article  Google Scholar 

  • Maass, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDM Mathematics Education, 45(6), 887–899.

    Article  Google Scholar 

  • Marsh, H. W., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades and standardized test scores: reciprocal effects models of causal ordering. Child Development, 76(2), 397–416.

  • McLaughlin, M. W., & Talbert, J. E. (2006). Building school-based teacher learning communities: Professional strategies to improve student achievement (Vol. 45). New York: Teachers College Press.

    Google Scholar 

  • Mischo, C., & Maass, K. (2013). The effect of teacher beliefs on student competence in mathematical modeling–An intervention study. Journal of Education and Training Studies, 1(1), 19–38.

    Article  Google Scholar 

  • Niss, M. (1992). Applications and modelling in school mathematics–Directions for future developement. Roskilde: IMFUFA Roskilde Universitetscenter.

    Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. L. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–32). New York: Springer.

    Chapter  Google Scholar 

  • OECD (1998). Staying ahead: In-service training and teacher professional development: Paris: OECD Publishing.

    Google Scholar 

  • OECD (2009). Technical reportPISA 2006. Paris: OECD Publishing.

    Book  Google Scholar 

  • OECD (2014). TALIS 2013 results: An international perspective on teaching and learning. Paris: OECD Publishing.

    Google Scholar 

  • OECD (2016). PISA 2015 results (Volume II): Policies and practices for successful schools. PISA: OECD Publishing, Paris.

    Google Scholar 

  • Palm, T. (2007). Features and impact of the authenticity of applied mathematical school tasks. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 201–208). New York: Springer.

    Chapter  Google Scholar 

  • Perrin-Glorian, M.-J., Deblois, L., & Robert, A. (2008). Individual practicing mathematics teachers: Studies on their professional growth. In K. Krainer & T. Wood (Eds.), Participation in mathematics teacher education. Individuals, teams, communities and networks (Vol. 3, pp. 35–39). Rotterdam: Sense Publishers.

    Google Scholar 

  • Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(1), 4–15.

    Article  Google Scholar 

  • Radford, L. (2010). The anthropological turn in mathematics education and its implication on the meaning of mathematical activity and classroom practice. Acta Didactica Universitatis Comenianae Mathematics, 10, 103–120.

    Google Scholar 

  • Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Rocard report: “Science education now: A new pedagogy for the future of Europe”. EU 22845, European Commission.

  • Roesken-Winter, B., Hoyles, C., & Blömeke, S. (2015a). Evidence-based CPD: Scaling up sustainable interventions. ZDM Mathematics Education, 47(1), 1–12.

    Article  Google Scholar 

  • Roesken-Winter, B., Schüler, S., Stahnke, R., & Blömeke, S. (2015b). Effective CPD on a large scale: examining the development of multipliers. ZDM Mathematics Education, 47(1), 13–25.

    Article  Google Scholar 

  • Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393–417.

    Article  Google Scholar 

  • Shulman, L. S. (1986). Paradigms and research programs in the study of teaching: A contemporary perspective. In M. C. Wittrock (Ed.), Handbook of research in teaching (pp. 3–36). New York: Macmillan.

    Google Scholar 

  • Skott, J. (2013). Understanding the role of the teacher in emerging classroom practices: Searching for patterns of participation. ZDM Mathematics Education, 45(4), 547–559.

    Article  Google Scholar 

  • Swan, M. (2005). Improving learning in mathematics: Challenges and strategies. Sheffield: Teaching and Learning Division, Department for Education and Skills Standards Unit.

    Google Scholar 

  • Swan, M. (2006). Collaborative learning in mathematics: A challenge to our beliefs and practices. London: National Institute for Advanced and Continuing Education (NIACE) for the National Research and Development Centre for Adult Literacy and Numeracy (NRDC).

    Google Scholar 

  • Swan, M. (2007). The impact of task-based professional development on teachers’ practices and beliefs: A design research study. Journal of Mathematics Teacher Education, 10(4–6), 217–237.

    Article  Google Scholar 

  • Tirosh, D., & Graeber, A. O. (2003). Challenging and changing mathematics teaching classroom practices. In A. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick & F. Leung (Eds.), Second international handbook of mathematics education (pp. 643–687). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Valentine, J. C., & Cooper, H. (2003). Effect size substantive interpretation guidelines: issues in the interpretation of effect sizes. Washington, DC: What Works Clearinghouse.

  • Vos, P. (2011). What is “authentic” in the teaching and learning of mathematical modelling? In G. Kaiser, W. Blum, R. B. Ferri & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 713–722). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Weiss, I. R., Pasley, J. D., Smith, P. S., Banilower, E. R., & Heck, D. J. (2003). Looking inside the classroom. Chapel Hill: Horizon Research Inc.

    Google Scholar 

  • Zehetmeier, S., & Krainer, K. (2011). Ways of promoting the sustainability of mathematics teachers’ professional development. ZDM Mathematics Education, 43(6–7), 875–887.

    Article  Google Scholar 

Download references

Acknowledgements

The project PRIMAS has received funding from the European Union Seventh Framework Programme (FP7/2007–2013) under grant agreement no. 244380. This paper reflect only the authors’ views and the European Union is not liable for any use that may be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Maass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maass, K., Engeln, K. Impact of professional development involving modelling on teachers and their teaching. ZDM Mathematics Education 50, 273–285 (2018). https://doi.org/10.1007/s11858-018-0911-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-018-0911-y

Keywords

Navigation