Skip to main content
Log in

Expansive movements in the development of mathematical modeling: analysis from an Activity Theory perspective

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This research was conducted during an online continuing education course for mathematics teachers, whose core focus was modeling and applications. We studied the interactions of one group of two teachers, who worked collectively in posing and solving a modeling problem through a closed group on the social network Facebook. The research question guiding this paper was how the development of mathematical modeling occurs from an Activity Theory perspective, recognizing tensions that occur, and its evolution in the process of posing and solving a modeling problem. The researchers took a qualitative approach, analyzing discursive manifestations in the modeling process. In the discussion, contradictions emerged in the group through events such as dilemma and conflict. The results indicate that the modeling task acted as an artifact that brought to light inner contradictions, and thus, allowed teachers to move from a conflict to the formulation of an open problem, and from a dilemma to the construction of a model and a pedagogic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from Engeström 1987, p. 78)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Anthony, G., Hunter, R., & Thompson, Z. (2014). Expansive learning: Lessons from one teacher’s learning journey. ZDM Mathematics Education, 46(2), 279–291. https://doi.org/10.1007/s11858-013-0553-z.

    Article  Google Scholar 

  • Araújo, JdeL. (2013). Ser crítico em projetos de modelagem em uma perspectiva crítica de educação matemática. Bolema Boletim de Educação Matemática, 26(43), 839–859.

    Article  Google Scholar 

  • Ärlebäck, J. (2009). Mathematical modelling in upper secondary mathematics education in Sweden: A curricula and design study (Unpublished Doctoral Thesis). Linköping University, Linköping, Sweden.

  • Bassanezi, R. C. (2002). Ensino-aprendizagem com modelagem matemática. São Paulo: Editora Contexto.

    Google Scholar 

  • Blum, W. (2012). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 73–98). Seoul: Springer.

    Google Scholar 

  • Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716.

    Article  Google Scholar 

  • Bonotto, C. (2007). How to replace word problems with activities of realistic mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 185–192). New York: Springer.

    Chapter  Google Scholar 

  • Borba, M. C. (1987). Um estudo de etnomatemática e sua incorporação na elaboração de uma proposta pedagógica para oNúcleo-escolada Favela da Vila Nogueira-São Quirino (Unpublished Master’s Thesis). UNESP, Rio Claro, São Paulo.

  • Borba, M. C. (2009). Potential scenarios for internet use in the mathematics classroom.. ZDM Mathematics Education, 41(4), 453–465.

    Article  Google Scholar 

  • Borba, M. C. (2012). Humans-with-media and continuing education for mathematics teachers in online environments. ZDM Mathematics Education, 44, 801–814.

    Article  Google Scholar 

  • Borba, M. C., Malheiros, A. P. S., & Zulatto, R. B. A. (2010). Online distance education. Rotterdam: Sense Publishers.

    Google Scholar 

  • Borba, M. C., Villarreal, M., & Soares, D. S. (2016). Modeling using data available on the internet. In C. R. Hirsch & A. R. McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 143–152). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, experimentation and visualization. New York: Springer.

    Google Scholar 

  • Caldeira, A. D. (2009). Modelagem matemática: Um outro olhar. ALEXANDRIA Revista de Educação em Ciência e Tecnologia, 2(2), 33–54.

    Google Scholar 

  • Cordero, F. (2006). La modellazione e la rappresentazione grafica nell’insegnamento-apprendimento della matematica. La Matematica e la sua Didattica, pp. 59–79.

  • Cunha, M. I. (1989). O bom professor e a sua prática (Coleção Magistério: Formação e trabalho Pedagógico). Campinas: Papirus.

    Google Scholar 

  • Daniels, H. (2003). Vygotsky e a pedagogia. Brasil: Edições Loyola. English edition: Daniels, H. (2001). Vygotsky and pedagogy. London: Routledge: São Paulo.

  • Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit.

    Google Scholar 

  • Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen & R.-L. Punamäki (Eds.), Perspectives on Activity Theory (pp. 19–38). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Engeström, Y. (2000). Activity Theory as a framework for analyzing and redesigning work. Ergonomics, 43(7), 960–974.

    Article  Google Scholar 

  • Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14, 133–156.

    Article  Google Scholar 

  • Engeström, Y. (2006). Activity Theory and expansive design. In S. Bagnara & G. C. Smith (Eds.), Theories and practice of interaction design (pp. 3–23). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Engeström, Y., & Sannino, A. (2011). Discursive manifestations of contradictions in organizational change efforts. Journal of Organizational Change Management, 368–387.

  • Goodchild, S., & Jaworski, B. (2005). Using contradictions in a teaching and learning development project. In H. L. Chick & J. L. Vincent (Eds.) Proceedings of de 29th conference of the International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 41–48). Melbourne: PME.

    Google Scholar 

  • Hardman, J. (2005). An exploratory case study of computer use in a primary school mathematics classroom: New technology, new pedagogy? Research: Information and Communication Technologies. Perspectives in Education, 23(4), 99–111.

  • Holzkamp, K. (1993). Lernen: Subjektwissenschaftliche grundlegung. Frankfurt: M: Campus.

    Google Scholar 

  • Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302–310.

    Article  Google Scholar 

  • Langemeyer, I. (2005). Contradictions in expansive learning: Towards a critical analysis of self-dependent forms of learning in relation to contemporary socio-technological change. Forum Qualitative Social Research, 7(1), Art. 12.

    Google Scholar 

  • Leont’ev, A. N. (1981). The problem of activity in psychology. In J. V. Wertsh (Ed.), The concept of activity in Soviet psychology. New York: M. E. Sharpe. Inc.

    Google Scholar 

  • Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–32). New York: Springer.

    Chapter  Google Scholar 

  • Potari, D. (2013). The relationship of theory and practice in mathematics teacher professional development: An Activity Theory perspective. ZDM The International Journal on Mathematics Education, 45(4), 507–519. https://doi.org/10.1007/s11858-013-0498-2.

    Article  Google Scholar 

  • Rosa, M., & Orey, D. (2013). Ethnomodeling as a research theoretical framework on ethnomathematics and mathematical modeling. Journal of Urban Mathematics Education, 6(2), 62–80.

    Google Scholar 

  • Roth, W.-M. (2013). Contradictions and uncertainty in scientifics’ mathematical modeling and interpretation of data. Journal of Mathematical Behavior, 32, 593–612.

    Article  Google Scholar 

  • Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam: Sense Publishers.

    Book  Google Scholar 

  • Saviani, D. (1985). Do senso comum a consciência filosófica. Brasil: Cortez Editora.

    Google Scholar 

  • Silva, M. (2000). Sala de aula interativa. Rio de Janeiro: Quartet.

    Google Scholar 

  • Soares, D. S., & Souto, D. L. P. (2014). Tensões no processo de análise de modelos em um curso de cálculo diferencial e integral. Revista de Matemática, Ensino e Cultura, pp. 44–74.

  • Souto, D. L. P., & Borba, M. C. (2015). Movimentos, estagnações, tensões e transformações na aprendizagem da matemática on-line. In Seminário Internacional de Pesquisa em Educação Matemática (Vol. 6, pp. 1–12). Pirenópolis: Sociedade Brasileira de Educação Matemática.

    Google Scholar 

  • Souto, D. L. P., & Borba, M. C. (2016). Seres humanos-com-internet ou internet-com-seres humanos: Uma troca de papéis?. Revista Latinoamericana de Investigación en Matemática Educativa. https://doi.org/10.12802/relime.13.1924.

    Google Scholar 

  • Vygotsky, L. (1978). Mind and society. Cambridge: Harvard University Press.

    Google Scholar 

  • Williams, J., & Goos, M. (2013). Modelling with mathematics and technology. In M. A. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick & F. K.-S. Leung (Eds.), Third international handbook of mathematics education (pp. 549–569). New York: Springer.

    Google Scholar 

  • Yamagata-Lynch, L. C. (2010). Activity systems analysis methods. Boston: Springer.

    Book  Google Scholar 

  • Zevenbergen, R., & Lerman, S. (2007). Pedagogy and interactive whiteboard: Using an activity theory approach to understand tensions in practice. In J. Watson & K. Beswick (Eds.), Mathematics education research group of Australasia (MERGA) Conference (Vol. 30, pp. 853–862). Hobart: MERGA, Inc.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeannette Galleguillos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galleguillos, J., Borba, M.C. Expansive movements in the development of mathematical modeling: analysis from an Activity Theory perspective. ZDM Mathematics Education 50, 129–142 (2018). https://doi.org/10.1007/s11858-017-0903-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0903-3

Keywords

Navigation