Abstract
This research was conducted during an online continuing education course for mathematics teachers, whose core focus was modeling and applications. We studied the interactions of one group of two teachers, who worked collectively in posing and solving a modeling problem through a closed group on the social network Facebook. The research question guiding this paper was how the development of mathematical modeling occurs from an Activity Theory perspective, recognizing tensions that occur, and its evolution in the process of posing and solving a modeling problem. The researchers took a qualitative approach, analyzing discursive manifestations in the modeling process. In the discussion, contradictions emerged in the group through events such as dilemma and conflict. The results indicate that the modeling task acted as an artifact that brought to light inner contradictions, and thus, allowed teachers to move from a conflict to the formulation of an open problem, and from a dilemma to the construction of a model and a pedagogic strategy.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Anthony, G., Hunter, R., & Thompson, Z. (2014). Expansive learning: Lessons from one teacher’s learning journey. ZDM Mathematics Education, 46(2), 279–291. https://doi.org/10.1007/s11858-013-0553-z.
Araújo, JdeL. (2013). Ser crítico em projetos de modelagem em uma perspectiva crítica de educação matemática. Bolema Boletim de Educação Matemática, 26(43), 839–859.
Ärlebäck, J. (2009). Mathematical modelling in upper secondary mathematics education in Sweden: A curricula and design study (Unpublished Doctoral Thesis). Linköping University, Linköping, Sweden.
Bassanezi, R. C. (2002). Ensino-aprendizagem com modelagem matemática. São Paulo: Editora Contexto.
Blum, W. (2012). Quality teaching of mathematical modelling: What do we know, what can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 73–98). Seoul: Springer.
Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects: State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22(1), 37–68. https://doi.org/10.1007/BF00302716.
Bonotto, C. (2007). How to replace word problems with activities of realistic mathematical modelling. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 185–192). New York: Springer.
Borba, M. C. (1987). Um estudo de etnomatemática e sua incorporação na elaboração de uma proposta pedagógica para o “Núcleo-escola” da Favela da Vila Nogueira-São Quirino (Unpublished Master’s Thesis). UNESP, Rio Claro, São Paulo.
Borba, M. C. (2009). Potential scenarios for internet use in the mathematics classroom.. ZDM Mathematics Education, 41(4), 453–465.
Borba, M. C. (2012). Humans-with-media and continuing education for mathematics teachers in online environments. ZDM Mathematics Education, 44, 801–814.
Borba, M. C., Malheiros, A. P. S., & Zulatto, R. B. A. (2010). Online distance education. Rotterdam: Sense Publishers.
Borba, M. C., Villarreal, M., & Soares, D. S. (2016). Modeling using data available on the internet. In C. R. Hirsch & A. R. McDuffie (Eds.), Mathematical modeling and modeling mathematics (pp. 143–152). Reston: National Council of Teachers of Mathematics.
Borba, M. C., & Villarreal, M. E. (2005). Humans-with-media and the reorganization of mathematical thinking: Information and communication technologies, modeling, experimentation and visualization. New York: Springer.
Caldeira, A. D. (2009). Modelagem matemática: Um outro olhar. ALEXANDRIA Revista de Educação em Ciência e Tecnologia, 2(2), 33–54.
Cordero, F. (2006). La modellazione e la rappresentazione grafica nell’insegnamento-apprendimento della matematica. La Matematica e la sua Didattica, pp. 59–79.
Cunha, M. I. (1989). O bom professor e a sua prática (Coleção Magistério: Formação e trabalho Pedagógico). Campinas: Papirus.
Daniels, H. (2003). Vygotsky e a pedagogia. Brasil: Edições Loyola. English edition: Daniels, H. (2001). Vygotsky and pedagogy. London: Routledge: São Paulo.
Engeström, Y. (1987). Learning by expanding: An activity-theoretical approach to developmental research. Helsinki: Orienta-Konsultit.
Engeström, Y. (1999). Activity theory and individual and social transformation. In Y. Engeström, R. Miettinen & R.-L. Punamäki (Eds.), Perspectives on Activity Theory (pp. 19–38). Cambridge: Cambridge University Press.
Engeström, Y. (2000). Activity Theory as a framework for analyzing and redesigning work. Ergonomics, 43(7), 960–974.
Engeström, Y. (2001). Expansive learning at work: Toward an activity theoretical reconceptualization. Journal of Education and Work, 14, 133–156.
Engeström, Y. (2006). Activity Theory and expansive design. In S. Bagnara & G. C. Smith (Eds.), Theories and practice of interaction design (pp. 3–23). Hillsdale: Lawrence Erlbaum.
Engeström, Y., & Sannino, A. (2011). Discursive manifestations of contradictions in organizational change efforts. Journal of Organizational Change Management, 368–387.
Goodchild, S., & Jaworski, B. (2005). Using contradictions in a teaching and learning development project. In H. L. Chick & J. L. Vincent (Eds.) Proceedings of de 29th conference of the International Group for the Psychology of Mathematics Education, (Vol. 3, pp. 41–48). Melbourne: PME.
Hardman, J. (2005). An exploratory case study of computer use in a primary school mathematics classroom: New technology, new pedagogy? Research: Information and Communication Technologies. Perspectives in Education, 23(4), 99–111.
Holzkamp, K. (1993). Lernen: Subjektwissenschaftliche grundlegung. Frankfurt: M: Campus.
Kaiser, G., & Sriraman, B. (2006). A global survey of international perspectives on modelling in mathematics education. Zentralblatt für Didaktik der Mathematik, 38(3), 302–310.
Langemeyer, I. (2005). Contradictions in expansive learning: Towards a critical analysis of self-dependent forms of learning in relation to contemporary socio-technological change. Forum Qualitative Social Research, 7(1), Art. 12.
Leont’ev, A. N. (1981). The problem of activity in psychology. In J. V. Wertsh (Ed.), The concept of activity in Soviet psychology. New York: M. E. Sharpe. Inc.
Niss, M., Blum, W., & Galbraith, P. (2007). Introduction. In W. Blum, P. L. Galbraith, H.-W. Henn & M. Niss (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study (pp. 3–32). New York: Springer.
Potari, D. (2013). The relationship of theory and practice in mathematics teacher professional development: An Activity Theory perspective. ZDM The International Journal on Mathematics Education, 45(4), 507–519. https://doi.org/10.1007/s11858-013-0498-2.
Rosa, M., & Orey, D. (2013). Ethnomodeling as a research theoretical framework on ethnomathematics and mathematical modeling. Journal of Urban Mathematics Education, 6(2), 62–80.
Roth, W.-M. (2013). Contradictions and uncertainty in scientifics’ mathematical modeling and interpretation of data. Journal of Mathematical Behavior, 32, 593–612.
Roth, W.-M., & Radford, L. (2011). A cultural-historical perspective on mathematics teaching and learning. Rotterdam: Sense Publishers.
Saviani, D. (1985). Do senso comum a consciência filosófica. Brasil: Cortez Editora.
Silva, M. (2000). Sala de aula interativa. Rio de Janeiro: Quartet.
Soares, D. S., & Souto, D. L. P. (2014). Tensões no processo de análise de modelos em um curso de cálculo diferencial e integral. Revista de Matemática, Ensino e Cultura, pp. 44–74.
Souto, D. L. P., & Borba, M. C. (2015). Movimentos, estagnações, tensões e transformações na aprendizagem da matemática on-line. In Seminário Internacional de Pesquisa em Educação Matemática (Vol. 6, pp. 1–12). Pirenópolis: Sociedade Brasileira de Educação Matemática.
Souto, D. L. P., & Borba, M. C. (2016). Seres humanos-com-internet ou internet-com-seres humanos: Uma troca de papéis?. Revista Latinoamericana de Investigación en Matemática Educativa. https://doi.org/10.12802/relime.13.1924.
Vygotsky, L. (1978). Mind and society. Cambridge: Harvard University Press.
Williams, J., & Goos, M. (2013). Modelling with mathematics and technology. In M. A. Clements, A. Bishop, C. Keitel-Kreidt, J. Kilpatrick & F. K.-S. Leung (Eds.), Third international handbook of mathematics education (pp. 549–569). New York: Springer.
Yamagata-Lynch, L. C. (2010). Activity systems analysis methods. Boston: Springer.
Zevenbergen, R., & Lerman, S. (2007). Pedagogy and interactive whiteboard: Using an activity theory approach to understand tensions in practice. In J. Watson & K. Beswick (Eds.), Mathematics education research group of Australasia (MERGA) Conference (Vol. 30, pp. 853–862). Hobart: MERGA, Inc.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Galleguillos, J., Borba, M.C. Expansive movements in the development of mathematical modeling: analysis from an Activity Theory perspective. ZDM Mathematics Education 50, 129–142 (2018). https://doi.org/10.1007/s11858-017-0903-3
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11858-017-0903-3