Skip to main content
Log in

The use of heuristic strategies in modelling activities

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript


For students working on realistic complex modelling problems as autonomously as possible the support by a tutor is indispensable for the students. However, how this support can be realised is still a question that has not been sufficiently answered. Based on prior research, it turned out that teacher interventions based on heuristic strategies might have a high potential to support students in a way that keeps a high level of independency using Zech’s idea of strategic teacher interventions. This result led to the question of how far the heuristic strategies known from problem-solving theory appear in the modelling process. To answer this question an existing reconstruction of the solving process of the bus stop problem was analysed with regard to these strategies. This reconstruction itself was based on videos of students working on the bus-stop-problem in the prior study. Relying on the identified heuristic strategies, strategic interventions were created that could facilitate the modelling process of the students.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  • Blum, W., Galbraith, P. L., Henn, H.-W., & Niss, M. (2007). (Eds.), Modelling and applications in mathematics education. The 14th ICMI Study. New York: Springer.

    Google Scholar 

  • Dörner, D. (1976). Problemlösen als Informationsverarbeitung (1. Aufl.). Stuttgart: Kohlhammer.

    Google Scholar 

  • Flavell, J. H. (1976). Metacognitive aspects of problem solving. In L. B. Resnick (Ed.), The nature of intelligence (pp. 231–235). Hillsdale: Lawrence Erlbaum Associates und distributed by Halsted Press Division of J. Wiley.

    Google Scholar 

  • Greefrath, G. (2011). Using technologies: New possibilities of teaching and learning modelling: Overview. In G. Kaiser, W. Blum, R. Borromeo Ferri & G. Stillmann (Eds.), Trends in teaching and learning of mathematical modelling (Bd. 1) (pp. 301–304). International perspectives on the teaching and learning of mathematical modelling. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kaiser, G., & Stender, P. (2013). Complex modelling problem in cooperative learning environments self-directed learning environments. In G. Stillman, G. Kaiser, W. Blum & J. Brown (Eds.), Teaching mathematical modelling: Connecting to research and practice (pp. 277–294). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Kießwetter, K. (1983). Modellierung von Problemlöseprozessen. Der Mathematikunterricht, 29(3), 71–101.

    Google Scholar 

  • Kießwetter, K. (1985). Die Förderung von mathematisch besonders begabten und interessierten Schülern—ein bislang vernachlässigtes sonderpädagogisches Problem: Mit Informationen über das Hamburger Modell. Mathematischer und Naturwissenschaftlicher Unterricht, 38(5), 300–306.

    Google Scholar 

  • Leiss, D. (2007). “Hilf mir es selbst zu tun”: Lehrerinterventionen beim mathematischen Modellieren. Hildesheim: Franzbecker.

    Google Scholar 

  • Mayring, P. (2015). Qualitative content analysis: Theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education (pp. 365–380). Dordrecht: Springer.

    Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  Google Scholar 

  • Nistal, A., van Dooren, W., Clarebout, G., Elen, J., & Verschaffel, L. (2010). Representational flexibility in linear-function problems. In L. Verschaffel, E. Corte, T. de Jong & J. Elen. (Eds.), Use of representations in reasoning and problem solving (pp. 74–93). London: Routledge.

    Google Scholar 

  • Pollak, H. O. (1979). The interaction between mathematics and other school subjects. In UNESCO (Ed.), New trends in mathematics teaching (Vol. 4, pp. 232–248). Paris: UNESCO.

    Google Scholar 

  • Pólya, G. (1961a). Mathematical discovery: On understanding, learning, and teaching problem solving (Vol. 1). New York: Ishi Press (reprint 2009).

    Google Scholar 

  • Pólya, G. (1961b). Mathematical discovery: On understanding, learning, and teaching problem solving (Vol. 2). New York: Ishi Press (reprint 2009).

    Google Scholar 

  • Pólya, G. (1973). How to solve it. A new aspect of mathematical methods (2nd ed.). Princeton: Princeton University Press.

    Google Scholar 

  • Stender, P. (2016). Wirkungsvolle Lehrerinterventionsformen bei komplexen Modellierungsaufgaben. Wiesbaden: Springer.

    Book  Google Scholar 

  • Stender, P., & Kaiser, G. (2015). Scaffolding in complex modelling situations. ZDM Mathematics Education, 47(7), 1255–1267.

    Article  Google Scholar 

  • Zech, F. (1996). Grundkurs Mathematikdidaktik (8th ed.). Weinheim: Beltz.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Peter Stender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stender, P. The use of heuristic strategies in modelling activities. ZDM Mathematics Education 50, 315–326 (2018).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: