Skip to main content

Advertisement

Log in

Some thoughts on gifted education and creativity

  • Commentary Paper
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This article serves as commentary on the papers featured in the issue. Accordingly, these papers and the questions raised in them form the basis of its discussion. The papers, in turn, are addressing numerous aspects of creativity and working with the mathematically gifted, an area of study that has attracted considerable scholarly attention in the recent decades. This article attempts to elaborate on the findings and ideas of the discussed papers, specifically emphasizing the intrinsic connection between education for the mathematically gifted and general education, as well as the importance of the study and improvement of the practice of mathematics education. The piece starts with the discussion of a few relevant theoretical problems, then, following one of the papers in the issue, addresses the myths of gifted education and creativity, and then goes into other themes of the issue, including classroom practices and mathematics teacher education. At the end, some new research questions posed in the issue are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. In German: “Das Talent war damals eine sehr missliche Begabung, denn es brachte in Verdacht der Charakterlosigkeit. Die schelsüchtige Impotenz hatte endlich nach tausendjährigem Nachgrübeln ihre große Waffe gefunden gegen die Übermüthigen des Genius; sie fand nämlich die Antithese von Talent und Charakter.” (Heine 1914, p. 9).

References

  • Beghetto, R. A., & Kaufman, J. C. (2009). Intellectual estuaries: Connecting learning and creativity in programs of advanced academics. Journal of Advanced Academics, 20(2), 296–324.

    Article  Google Scholar 

  • Begle, E. G. (1969). The role of research in the improvement of mathematics education. Educational Studies in Mathematics, 2(2/3), 232–244.

    Article  Google Scholar 

  • Borland, J. (1997). The construct of giftedness. Peabody Journal of Education, 72, 6–20.

    Article  Google Scholar 

  • Brown, S. I., & Walter M. I. (1990). The art of problem posing. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Cooney, T. (1985). A beginning teacher’s view of problem solving. Journal for Research in Mathematics Education, 16, 324–336.

    Article  Google Scholar 

  • Csikszentmihalyi, M. (1988). Society, culture, and person: A systems view of creativity. In R. J. Sternberg (Ed.), The nature of creativity: Contemporary psychological perspectives (pp. 325–339). New York: Cambridge University Press.

    Google Scholar 

  • Dewey, J. (1944). Democracy and education: An introduction to the philosophy of education. New York: The Free Press.

    Google Scholar 

  • Fursenko, A. (Ed.). (2004). Prezidium TsK KPSS 1954–1964. Chernovye protokol’nye zapisi zasedanii. Stenogrammy [The Presidium of the Central Committee of the CPSU 1954–1964. Original Transcripts of Meetings. Minutes]. Moscow: Rosspen.

    Google Scholar 

  • Heine, H. (1914). Atta Troll. New York: B. W. Huebsch.

    Google Scholar 

  • Heine, H. (1971). Atta Troll. Ein Sommernachtstraum. Leipzig: Verlag Philipp Reclam jun.

    Google Scholar 

  • Hershkowitz, R., Tabach, M., & Dreyfus, T. (2017). Creative reasoning and shifts of knowledge in the mathematics classroom. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0816-6.

    Google Scholar 

  • Hoth, J., Kaiser, G., Busse, A., Döhrmann, M., König, J., Blömeke, S. (2017). Professional competences of teachers for fostering creativity and supporting high–achieving students. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0817-5.

    Google Scholar 

  • Kaestle, C. F. (1973). Joseph Lancaster and the monitorial school movement; a documentary history. New York: Teachers College Press.

    Google Scholar 

  • Karp, A. (2004). Examining the interactions between mathematical content and pedagogical form: Notes on the structure of the lesson. For the Learning of Mathematics, 24(1), 40–47.

    Google Scholar 

  • Karp, A. (2007). Pamiati A. R. Maizelisa. (A. R. Maizelis: in Memoriam). St. Petersburg: SMIO–PRESS.

  • Karp, A. (2011). Toward a history of teaching the mathematically gifted: Three possible directions for research. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 8–18.

    Article  Google Scholar 

  • Karp, A. (2016). Mathematically gifted education: Some political questions. In R. Leikin & B. Sriraman (Eds.), Creativity and giftedness. Interdisciplinary perspectives from mathematics and beyond. New York: Springer.

    Google Scholar 

  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren (J. Kilpatrick & I. Wirszup, Eds.; J. Teller, Trans.). Chicago: University of Chicago Press.

    Google Scholar 

  • Kurosh, A. (1974). Obschaya algebra [General algebra]. Moscow: Nauka.

    Google Scholar 

  • Leikin, R. (2011). Teaching the mathematically gifted: Featuring a teacher. Canadian Journal of Science, Mathematics and Technology Education, 11(1), 78–89.

    Article  Google Scholar 

  • Leikin, R., Berman, A., & Koichu, B. (Eds.). (2009). Creativity in mathematics and the education of gifted students. Rotterdam: Sense Publishers.

    Google Scholar 

  • Leikin, R., Koichu, B., Berman, A., & Dinur, S. (2017). How are questions that students ask in high level mathematics classes linked to general giftedness? ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0815-7.

    Article  Google Scholar 

  • Leikin, R., & Sriraman, B. (Eds.). (2016). Creativity and giftedness. Interdisciplinary perspectives from mathematics and beyond. New York: Springer.

    Google Scholar 

  • Mhlolo, M. K. (2017). Regular classroom teachers’ recognition and support of the creative potential of mildly gifted mathematics learners. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0824-6.

    Google Scholar 

  • Nolte, M., & Pamperien, K. (2017). Challenging problems in a regular classroom setting and in a special foster programme. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0825-5.

    Google Scholar 

  • Renzulli, J. S. (1978). What makes giftedness? Phi Delta Kappan, 60(180–184), 261.

    Google Scholar 

  • Renzulli, J. S. (1986). The three-ring conception of giftedness: A developmental model for creative productivity. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (pp. 332–357). New York: Cambridge University Press.

    Google Scholar 

  • Sapon-Shevin, M. (1994). Playing favorites: Gifted education and the disruption of community. Albany: State University of New York Press.

    Google Scholar 

  • Schoenfeld, A. (1985). Mathematical problem solving. New York: Academic Press.

    Google Scholar 

  • Sfard, A., & Kieran, C. (2001). Cognition as communication: Rethinking learning-by-talking through multi-faceted analysis of students’ mathematical interactions. Mind, Culture, and Activity, 8(1), 42–76.

    Article  Google Scholar 

  • Sfard, A., Forman, E., & Kieran, C. (Eds.). (2002). Learning discourse: Discursive approaches to research in mathematics education. Boston: Kluwer.

    Google Scholar 

  • Sheffield, L. J. (Ed.). (1999). Developing mathematically promising students. Reston: NCTM.

    Google Scholar 

  • Sheffield, L. J. (2017). Dangerous myths about “gifted” mathematics students. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0814-8.

    Google Scholar 

  • Singer, F. M., Voica, C., & Pelczer, I. (2017). Cognitive styles in posing geometry problems: implications for assessment of mathematical creativity. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0820-x.

    Google Scholar 

  • Sriraman, B., & Dickman, B. (2017). Mathematical pathologies as pathways into creativity. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0822-8.

    Google Scholar 

  • Tabach, M. & Friedlander, A. (2017). Algebraic procedures and creative thinking. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0803-y.

    Google Scholar 

  • Tannenbaum, A. J. (2000). A history of giftedness in school and society. In K. A. Heller, F. J. Mönks, A. H. Passow (Eds.) International handbook of giftedness and talent (pp. 23–53). Oxford: Elsevier.

    Google Scholar 

  • Tobin, K., & Tippins, D. (1993). Constructivism as a referent for teaching and learning. In K. Tobin (Ed.), The practice of constructivism in science education (pp. 3–21). Washington, DC: AAAS Press.

    Google Scholar 

  • Usiskin, Z. (2000). The development into the mathematically talented. Journal of Secondary Gifted Education, 11(3), 152–162.

    Google Scholar 

  • Vygotsky, L. (1984). Pedologiya podrostka [Pedology of the adolescent]. In L. Vygotsky, Sobranie sochinenii [Collected works] (vol. 4, pp. 5–242). Moscow: Pedagogika.

    Google Scholar 

  • Watts, D.M., & Alsop, S. (1996). The QUESTCUP Project: A study of pupils’ questions for conceptual understanding. New York: Paper presented at the American Educational Research Association.

    Google Scholar 

  • Wertheimer, M. (1959). Productive thinking. New York: Harper and Row.

    Google Scholar 

  • Zazkis, R. (2017). Lesson play tasks as a creative venture for teachers and teacher educators. ZDM Mathematics Education, 49(1). doi:10.1007/s11858-016-0808-6.

    Google Scholar 

  • Zazkis, R., Sinclair, N., & Liljedahl, P. (2013). Lesson play in mathematics education: A tool for research and professional development. Dordrecht: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Karp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karp, A. Some thoughts on gifted education and creativity. ZDM Mathematics Education 49, 159–168 (2017). https://doi.org/10.1007/s11858-017-0838-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-017-0838-8

Keywords

Navigation