, Volume 49, Issue 3, pp 397–409 | Cite as

Interest in mathematics = interest in mathematics? What general measures of interest reflect when the object of interest changes

  • Stefan Ufer
  • Stefanie Rach
  • Timo Kosiol
Original Article


Students’ motivational characteristics, e.g., subject-related interest, are considered important predictors for successful learning processes. However, few empirical studies provide evidence for the assumed chain of effects between high interest and high achievement in mathematics. One reason for this result might be that the applied measures of learners’ interest in mathematics are not well aligned with the characteristics of the learning content in the respective educational settings. At the transition from school to university, the character of mathematics shifts from a strongly application oriented school subject to a scientific discipline. When students are asked to rate their interest concerning mathematics learning in general, it is not clear which character of mathematics they refer to (in their ratings). To provide a more differentiated picture of learners’ interest, we developed questionnaires that survey students’ interest concerning the different characters of mathematics explicitly. With a sample of 323 students from academic mathematics programs, we analysed the quality of the developed scales and whether it is possible to differentiate interest facets according to the different characters of mathematics. In this contribution, we present the development of the instruments. The results of exploratory factor analyses and correlation analyses provide support for the quality of the developed instruments. Our results indicate that indeed the character of mathematics addressed in the questionnaire strongly influences students’ self-reports. Finally, we study how the differentiated interest constructs are related to general ratings of interest in mathematics.


Interest in mathematics Differentiated measures of interest Transition from school to university mathematics Interest as a person-object relationship 

Supplementary material

11858_2016_828_MOESM1_ESM.pdf (75 kb)
Supplementary material 1 (PDF 74 KB)


  1. Ainley, M., Hidi, S., & Berndorff, D. (2002). Interest, learning and the psychological processes that mediate their relationship. Journal of Educational Psychology, 94(3), 545–561.CrossRefGoogle Scholar
  2. Bless, H., Fellhauer, R., Bohner, G., & Schwarz, N. (1991). Need for cognition: eine Skala zur Erfassung von Engagement und Freude bei Denkaufgaben [Need for cognition: A scale for measuring commitment and joy when solving problems]. Retrieved April 29, 2016, from
  3. Burn, H., Mesa, V., & Arbor, A. (2015). The Calculus I curriculum. In D. Bressoud, V. Mesa & C. Rasmussen (Eds.), Insights and recommendations from the MAA National Study of College Calculus (pp. 45–58). MAA press.Google Scholar
  4. CCSSI. (2010). Common core state standards for mathematics. Retrieved April 30, 2016, from
  5. Cronbach, L., & Meehl, P. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281–302.CrossRefGoogle Scholar
  6. Deci, R., & Ryan, E. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78.CrossRefGoogle Scholar
  7. Dieter, M. (2012). Studienabbruch und Studienfachwechsel in der Mathematik: Quantitative Bezifferung und empirische Untersuchung von Bedingungsfaktoren [Drop-out and change of study in mathematics: Quantification and empirical analysis of factors] (Doctoral dissertation). Retrieved August 29, 2016, from
  8. Dörfler, W., & McLone, R. (1986). Mathematics as a school subject. In B. Christiansen, A. Howson & M. Otte (Eds.), Perspectives on mathematics education (pp. 49–97). Dordrecht: Reidel.CrossRefGoogle Scholar
  9. Eccles, J., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53, 109–132.CrossRefGoogle Scholar
  10. Eilerts, K. (2009). Kompetenzorientierung in der Mathematik-Lehrerausbildung: Empirische Untersuchung zu ihrer Implementierung [Competence orientation in mathematics teacher education: An empirical study about its implementation]. Zürich: LIT Verlag.Google Scholar
  11. Engelbrecht, J. (2010). Adding structure to the transition process to advanced mathematical activity. International Journal of Mathematical Education in Science and Technology, 41(2), 143–154.CrossRefGoogle Scholar
  12. Epp, S. (2003). The role of logic in teaching proof. The American Mathematical Monthly, 110(10), 886–899.CrossRefGoogle Scholar
  13. Fenollar, P., Román, S., & Cuestas, P. (2007). University students’ academic performance: An integrative conceptual framework and empirical analysis. The British Psychological Society, 77(4), 873–891.Google Scholar
  14. Frenzel, A., Pekrun, R., Dicke, A.-L., & Goetz, T. (2012). Beyond quantitative decline: Conceptual shifts in adolescents’ development of interest in mathematics. Developmental Psychology, 48(4), 1069–1082.CrossRefGoogle Scholar
  15. Frenzel, A. C., Goetz, T., Pekrun, R., & Watt, H. (2010). Development of mathematics interest in adolescence: Influences of gender, family, and school context. Journal of Research on Adolescence, 20(2), 507–537.CrossRefGoogle Scholar
  16. Gogol, K., Brunner, M., Preckel, F., Goetz, T., & Martin, R. (2016). Developmental dynamics of general and school-subject-specific components of academic self-concept, academic interest, and academic anxiety. Frontiers in Psychology, 7, 356.CrossRefGoogle Scholar
  17. Gueudet, G. (2008). Investigating the secondary-tertiary transition. Educational Studies in Mathematics, 67(3), 237–254.CrossRefGoogle Scholar
  18. Hailikari, T., Nevgi, A., & Komulainen, E. (2008). Academic self-beliefs and prior knowledge as predictors of student achievement in mathematics: A structural model. Educational Psychology: An International Journal of Experimental Educational Psychology, 28(1), 59–71.CrossRefGoogle Scholar
  19. Healy, L., & Hoyles, C. (1998). Technical report on the nationwide survey: Justifying and proving in school mathematics. London: University of London.Google Scholar
  20. Heinze, A., Reiss, K., & Rudolph, F. (2005). Mathematics achievement and interest in mathematics from a differential perspective. ZDM-The International Journal on Mathematics Education, 37(3), 212–220.CrossRefGoogle Scholar
  21. Hidi, S. (1990). Interest and its contribution as a mental resource for learning. Review of Educational Research, 60(4), 549–571.CrossRefGoogle Scholar
  22. Hidi, S. (1995). A reexamination of the role of attention in learning from text. Educational Psychology Review, 7(4), 323–350.CrossRefGoogle Scholar
  23. Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127.CrossRefGoogle Scholar
  24. Hoyles, C., Newman, K., & Noss, R. (2001). Changing patterns of transition from school to university mathematics. International Journal of Mathematical Education in Science and Technology, 32(6), 829–845.CrossRefGoogle Scholar
  25. John, P., Naumann, L., & Soto, C. (2010). Paradigm shift to the integrative big five trait taxonomy: History, measurement, and conceptual issues. In P. John, R. Robins & L. Perwin. (Eds.), Handbook of personality: Theory and practice (pp. 114–159). New York: Guilford Press.Google Scholar
  26. Jordan, A., Krauss, S., Löwen, K., Blum, W., Neubrand, M., Brunner, M., et al. (2008). Aufgaben im COACTIV-Projekt: Zeugnisse des kognitiven Aktivierungspotentials im deutschen Mathematikunterricht [Tasks in the COACTIV-Project: Evidence of the potential for cognitive activation in German mathematics classes]. Journal für Mathematik-Didaktik, 29(2), 83–107.CrossRefGoogle Scholar
  27. Kiemer, K., Gröschner, A., Pehmer, A.-K., & Seidel, T. (2015). Effects of a classroom discourse intervention on teachers’ practice and students’ motivation to learn mathematics and science. Learning and Instruction, 35, 94–103. doi: 10.1016/j.learninstruc.2014.10.003.CrossRefGoogle Scholar
  28. KMK (2012). Bildungsstandard im Fach Mathematik für die Allgemeine Hochschulreife [Education standards in mathematics for the higher education entrance qualification]. Retrieved April 29, 2016, from
  29. Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32(5), 448–470.CrossRefGoogle Scholar
  30. Kolter, J., Liebendörfer, M., & Schukajlow, S. (2016). Mathe–nein danke? Interesse, Beliefs und Lernstrategien im Mathematikstudium bei Grundschullehramtsstudierenden mit Pflichtfach [Mathematics–no thanks? Interest, beliefs, and learning strategies of primary teacher students with compulsory subject mathematics]. In A. Hoppenbrock, R. Biehler, R. Hochmuth & H.-G. Rück (Eds.), Lehren und Lernen von Mathematik in der Studieneingangsphase (pp. 567–583). Wiesbaden: Springer Spektrum.CrossRefGoogle Scholar
  31. Krapp, A. (2002). Structural and dynamic aspects of interest development: Theoretical considerations from an ontogenetic perspective. Learning and Instruction, 12(4), 383–409.CrossRefGoogle Scholar
  32. Krapp, A., & Prenzel, M. (2011). Research on interest in science: Theories, methods, and findings. International Journal of Science Education, 33(1), 27–50.CrossRefGoogle Scholar
  33. Krug, A., & Schukajlow, S. (2013). Problems with and without connection to reality and students’ task-specific interest. In A. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 209–216). Kiel: PME.Google Scholar
  34. Lapan, R., Shaughnessy, P., & Boggs, K. (1996). Efficacy expectations and vocational interests as mediators between sex and choice of math/science college majors: A longitudinal study. Journal of Vocational Behavior, 49(3), 277–291.CrossRefGoogle Scholar
  35. Lee, W., Lee, M.-J., & Bing, M. (2014). Testing interest and self-efficacy as predictors of academic self-regulation and achievement. Contemporary Educational Psychology, 39, 86–99.CrossRefGoogle Scholar
  36. Liebendörfer, M., & Hochmuth, R. (2013). Interest in mathematics and the first steps at the university. In Proceedings of the Eighth Conference of European Research in Mathematics Education (pp. 2386–2395).Google Scholar
  37. Malmivuori, M.-L. (2006). Affect and self-regulation. Educational Studies in Mathematics, 63(2), 149–164.CrossRefGoogle Scholar
  38. Marsh, H., Trautwein, U., Lüdtke, O., Köller, O., & Baumert, J. (2005). Academic self-concept, interest, grades, and standardized test scores: Reciprocal effects models of causal ordering. Child Development, 76(2), 397–416.CrossRefGoogle Scholar
  39. Murphy, P., & Alexander, P. A. (2000). A motivated exploration of motivation terminology. Contemporary Educational Psychology, 25, 3–53.CrossRefGoogle Scholar
  40. Muthén, B., & Muthén, L. (1998–2015). Mplus (Version 7). Los Angeles, CA: Muthén & Muthén.Google Scholar
  41. OECD (2016). “PISA 2015 mathematics framework”. In: PISA 2015 assessment and analytical framework: Science, reading, mathematic and financial literacy. Paris: OECD Publishing.CrossRefGoogle Scholar
  42. Ottinger, S., Kollar, I., & Ufer, S. (2016). Content and form: All the same or different qualities of mathematical arguments? In C. Csíkos, A. Rausch, A., J. & Szitányi (Eds.), Proceedings of the 40th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 19–26). Szeged, Hungary: PME.Google Scholar
  43. Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Positive emotions in education. In E. Frydenberg (Ed.), Beyond coping. Meeting goals, visions, and challenges (pp. 149–173). Oxford: Oxford University Press.CrossRefGoogle Scholar
  44. Rach, S. (2014). Charakteristika von Lehr-Lern-Prozessen im Mathematikstudium: Bedingungsfaktoren für den Studienerfolg im ersten Semester [Characteristics of teaching-learning-processes: Conditional factors of study success in the first semester]. Münster: Waxmann.Google Scholar
  45. Rach, S., & Heinze, A. (2016). The transition from school to university in mathematics: Which influence do school-related variables have? International Journal of Science and Mathematics Education (online first). doi: 10.1007/s10763-016-9744-8.Google Scholar
  46. Rach, S., Kosiol, T., & Ufer, S. (accepted). Interest and self-concept concerning two characters of mathematics: All the same, or different effects? KHDM-reports.Google Scholar
  47. Schiefele, U. (2009). Situational and individual interest. In K. R. Wentzel & A. Wigfield (Eds.), Handbook of motivation at school Educational Psychology Handbook Series, (pp. 197–222). New York: Routledge.Google Scholar
  48. Schiefele, U., Krapp, A., & Winteler, A. (1992). Interest as a predictor of academic achievement: A meta-analysis of research. In K. A. Renninger, S. Hidi & A. Krapp (Eds.), The role of interest in learning and development (pp. 183–212). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
  49. Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance? In P. Liljedahl, C. Nicol, S. Oesterle & D. Allan (Eds.), Proceedings of the 38th Conference of the International Group for the Psychology of Mathematics Education and the 36th Conference of the North American Chapter of the Psychology of Mathematics Education (Vol. 5, pp. 129–136). Vancouver: PME.Google Scholar
  50. Schupp, J., & Gerlitz, J.-Y. (2014). Big five inventory-SOEP (BFI-S). Zusammenstellung sozialwissenschaftlicher Items und Skalen. [Big five inventory-SOEP (BFI-S): Compilation of sociological items and scales]. doi: 10.6102/zis54.
  51. Silvia, P. (2005). What is interesting? Exploring the appraisal structure of interest. Emotion, 5(1), 89–102.CrossRefGoogle Scholar
  52. Sonnert, G., & Sadler, P. (2015). The impact of instructor and institutional factors on students’ attitudes. In D. Bressoud, V. Mesa & C. Rasmussen (Eds.), Insights and recommendations from the MAA National Study of College Calculus (pp. 17–30). MAA press.Google Scholar
  53. Stroet, K., Opdenakker, M.-C., & Minnaert, A. (2015). What motivates early adolescents for school? A longitudinal analysis of associations between observed teaching and motivation. Contemporary Educational Psychology, 42, 129–140.CrossRefGoogle Scholar
  54. Thomas, M., & Klymchuk, S. (2012). The school-tertiary interface in mathematics: Teaching style and assessment practice. Mathematics Education Research Journal, 24(3), 283–300.CrossRefGoogle Scholar
  55. Ufer, S. (2015). The role of study motives and learning activities for success in first semester mathematics studies. In K. Beswick, T. Muir & J. Wells (Eds.), Proceedings of the 39th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 265–272). Hobart, Australia: PME.Google Scholar
  56. Vollstedt, M., Heinze, A., Gojdka, K., & Rach, S. (2014). Framework for examining the transformation of mathematics and mathematics learning in the transition from school to university. In S. Rezat, M. Hattermann & A. Peter-Koop (Eds.), Transformation: A fundamental idea of mathematics education (pp. 29–50). New York: Springer.CrossRefGoogle Scholar
  57. von Stumm, S., Hell, B., & Chamorro-Premuzic, T. (2011). The hungry mind: Intellectual curiosity is the third pillar of academic performance. Perspectives on Psychological Science, 6(6), 574–588. doi: 10.1177/1745691611421204.CrossRefGoogle Scholar
  58. Wiernik, B. M., Dilchert, S., & Ones, D. S. (2016). Creative interests and personality: Scientific versus artistic creativity. Zeitschrift für Arbeits-und Organisationspsychologie, 60(2), 65–78.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Department of MathematicsLMU MunichMunichGermany
  2. 2.Institute of MathematicsUniversity of PaderbornPaderbornGermany

Personalised recommendations