, Volume 49, Issue 3, pp 355–366 | Cite as

Interest development during the first year at university: do mathematical beliefs predict interest in mathematics?

  • Michael Liebendörfer
  • Stanislaw Schukajlow
Original Article


We examined the development of interest in first-year university students in a lower secondary school teachers’ program as well as connections between learners’ belief systems and interest. Students’ mathematics-related belief systems include their personal understanding of the nature of mathematics as a scientific domain (in the present study: aspects of process, application, schema, and formalism). Data (N = 92) on beliefs and mathematical interest were collected at the beginning of the first (T1) and second terms (T3). In addition, students’ interest was assessed at the ends of both terms (T2 and T4). Results showed that (1) students’ interest in mathematics remained stable during the first academic year, (2) application beliefs showed positive correlations with interest in the first but not the second term, and (3) application beliefs at the beginning of the term predicted students’ interest at the end of term in the second but not the first term; moreover, process, schema, and formalism beliefs did not predict interest in the first or in the second term. We discuss these results with respect to the influence of belief systems on interest but also with respect to possible effects that are based on differences between school mathematics and university mathematics.


Interest development Mathematical beliefs Teacher education Secondary-tertiary transition 


  1. Baumert, J., Bos, W., & Lehmann, R. (Eds.). (2000). TIMSS/III: Dritte Internationale Mathematik- und Naturwissenschaftsstudie-Mathematische und Naturwissenschaftliche Bildung am Ende der Schullaufbahn (vol. 2). Opladen: Leske+Budrich.Google Scholar
  2. Bikner-Ahsbahs, A., & Halverscheid, S. (2014). Introduction to the theory of Interest-Dense Situations (IDS). In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 97–113). Cham: Springer International Publishing.Google Scholar
  3. Bräunling, K., & Eichler, A. (2015). Teachers’ beliefs systems referring to the teaching and learning of arithmetic. In C. Bernack-Schüler, R. Erens, T. Leuders & A. Eichler (Eds.), Views and beliefs in mathematics education (pp. 95–107). Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  4. Brown, M., & Macrae, S. (2005). Full report of research activities and results: students’ experiences of undergraduate mathematics (Reference Number: R000238564). Swindon, UK.Google Scholar
  5. Cobb, P. (1985). Two children’s anticipations, beliefs, and motivations. Educational Studies in Mathematics, 16(2), 111–126.CrossRefGoogle Scholar
  6. Crawford, K., Gordon, S., Nicholas, J., & Prosser, M. (1994). Conceptions of mathematics and how it is learned: The perspectives of students entering university. Learning and Instruction, 4(4), 331–345.CrossRefGoogle Scholar
  7. Daskalogianni, K., & Simpson, A. (2002). ‘Cooling-off’: The phenomenon of a problematic transition from school to university. In 2nd International Conference on the Teaching of Mathematics (at the Undergraduate Level) (pp. 103–110). Crete.Google Scholar
  8. Daskalogianni, K., & Simpson, A. (2001). Beliefs overhang: The transition from school to university. Proceedings of the British Congress of Mathematics Education (In Collaboration with the British Society for Research into Learning Mathematics) (vol. 21, pp. 97–108).Google Scholar
  9. Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York: Plenum Press.CrossRefGoogle Scholar
  10. Deci, E. L., & Ryan, R. M. (2002). Handbook of self-determination research: Theoretical and applied issues. Rochester, NY: University of Rochester Press.Google Scholar
  11. Drüke-Noe, C. (2014). Aufgabenkultur in Klassenarbeiten im Fach Mathematik. Wiesbaden: Springer Fachmedien Wiesbaden.CrossRefGoogle Scholar
  12. Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review of Psychology, 53(1), 109–132.CrossRefGoogle Scholar
  13. Engelbrecht, J. (2010). Adding structure to the transition process to advanced mathematical activity. International Journal of Mathematical Education in Science and Technology, 41(2), 143–154.CrossRefGoogle Scholar
  14. Fechner, S. (2009). Effects of context-oriented learning on student interest and achievement in chemistry education. Berlin: Logos Verlag Berlin GmbH.Google Scholar
  15. Felbrich, A., Müller, C., & Blömeke, S. (2008). Epistemological beliefs concerning the nature of mathematics among teacher educators and teacher education students in mathematics. ZDM-The International Journal on Mathematics Education, 40(5), 763–776.CrossRefGoogle Scholar
  16. Frenzel, A. C., Pekrun, R., Dicke, A.-L., & Goetz, T. (2012). Beyond quantitative decline: Conceptual shifts in adolescents’ development of interest in mathematics. Developmental Psychology, 48(4), 1069–1082.CrossRefGoogle Scholar
  17. Furinghetti, F., Maggiani, C., & Morselli, F. (2012). How mathematics students perceive the transition from secondary to tertiary level with particular reference to proof. Nordic Studies in Mathematics Education, 17(3–4), 91–106.Google Scholar
  18. Goldin, G., Rösken, B., & Törner, G. (2009). Beliefs-no longer a hidden variable in mathematical teaching and learning processes. In J. Maaß & W. Schlöglmann (Eds.), Beliefs and attitudes in mathematics education: New research results (pp. 9–28). Rotterdam: Sense Publishers.Google Scholar
  19. Goulding, M., Hatch, G., & Rodd, M. (2003). Undergraduate mathematics experience: Its significance in secondary mathematics teacher preparation. Journal of Mathematics Teacher Education, 6(4), 361–393.CrossRefGoogle Scholar
  20. Graham, J. W. (2012). Missing data. New York: Springer.CrossRefGoogle Scholar
  21. Grigutsch, S. (1996). Mathematische Weltbilder von Schülern. Struktur, Entwicklung, Einflußfaktoren [Pupils’ mathematical world views. Structure, development, factors of influence]. Duisburg: University of Duisburg.Google Scholar
  22. Grigutsch, S., Raatz, U., & Törner, G. (1998a). Attitudes of mathematics teachers towards mathematics. (Einstellungen gegenüber Mathematik bei Mathematiklehrern). Journal für Mathematik-Didaktik, 19(1), 3–45.CrossRefGoogle Scholar
  23. Grigutsch, S., Raatz, U., & Törner, G. (1998b). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19(1), 3–45.CrossRefGoogle Scholar
  24. Grigutsch, S., & Törner, G. (1998). World views of mathematics held by university teachers of mathematics science (Preprint Series No. 420). Duisburg: Department of Mathematics, University of Duisburg.Google Scholar
  25. Gueudet, G. (2008). Investigating the secondary–tertiary transition. Educational Studies in Mathematics, 67(3), 237–254.CrossRefGoogle Scholar
  26. Harackiewicz, J. M., & Hulleman, C. S. (2010). The importance of interest: The role of achievement goals and task values in promoting the development of interest. Social and Personality Psychology Compass, 4(1), 42–52.CrossRefGoogle Scholar
  27. Harel, O. (2009). The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. Journal of Applied Statistics, 36(10), 1109–1118.CrossRefGoogle Scholar
  28. Heinze, A., Reiss, K., & Rudolph, F. (2005). Mathematics achievement and interest in mathematics from a differential perspective. ZDM-The International Journal on Mathematics Education, 37(3), 212–220.CrossRefGoogle Scholar
  29. Henn, H.-W., & Kaiser, G. (2001). Mathematik—ein polarisierendes Schulfach. Zeitschrift für Erziehungswissenschaft, 4(3), 359–380.CrossRefGoogle Scholar
  30. Hidi, S. (2006). Interest: A unique motivational variable. Educational Research Review, 1(2), 69–82.CrossRefGoogle Scholar
  31. Hourigan, M., & O’Donoghue, J. (2007). Mathematical under-preparedness: The influence of the pre-tertiary mathematics experience on students’ ability to make a successful transition to tertiary level mathematics courses in Ireland. International Journal of Mathematical Education in Science and Technology, 38(4), 461–476.CrossRefGoogle Scholar
  32. Kaldo, I., & Hannula, M. S. (2012). Structure of university students’ view of mathematics in Estonia. Nordic Studies in Mathematics Education, 17(3–4), 5–26.Google Scholar
  33. Kaya, S. (2007). The influences of student views related to mathematics and self-regulated learning on achievement of algebra I students. Columbus, OH: Ohio State University.Google Scholar
  34. Kloosterman, P. (2002). Beliefs about mathematics and mathematics learning in the secondary school: Measurement and implications for motivation. In G. C. Leder, E. Pehkonen & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 247–269). New York: Springer Netherlands.Google Scholar
  35. Köller, O. (2001). Mathematical world views and achievement in advanced mathematics in Germany: Findings from TIMSS Population 3. Studies in Educational Evaluation, 27(1), 65–78.CrossRefGoogle Scholar
  36. Köller, O., Baumert, J., & Schnabel, K. (2001). Does interest matter? The relationship between academic interest and achievement in mathematics. Journal for Research in Mathematics Education, 32(5), 448–470.CrossRefGoogle Scholar
  37. Kolter, J., Liebendörfer, M., & Schukajlow, S. (2016). Mathe–nein danke? Interesse, Beliefs und Lernstrategien im Mathematikstudium bei Grundschullehramtsstudierenden mit Pflichtfach. In A. Hoppenbrock, R. Biehler, R. Hochmuth & H.-G. Rück (Eds.), Lehren und Lernen von Mathematik in der Studieneingangsphase (pp. 567–583). Wiesbaden: Springer Fachmedien Wiesbaden.Google Scholar
  38. Krapp, A. (2005). Basic needs and the development of interest and intrinsic motivational orientations. Learning and Instruction, 15(5), 381–395.CrossRefGoogle Scholar
  39. Krapp, A. (2007). An educational–psychological conceptualisation of interest. International Journal for Educational and Vocational Guidance, 7(1), 5–21.CrossRefGoogle Scholar
  40. Krapp, A., & Lewalter, D. (2001). Development of interests and interest-based motivational orientations. A longitudinal study in vocational school and work settings. In S. Volet & S. Järvelä (Eds.), Motivation in learning contexts: theoretical and methodological implications (pp. 209–232). London: Elsevier.Google Scholar
  41. Krauss, S., Baumert, J., & Blum, W. (2008). Secondary mathematics teachers’ pedagogical content knowledge and content knowledge: validation of the COACTIV constructs. ZDM-The International Journal on Mathematics Education, 40(5), 873–892.CrossRefGoogle Scholar
  42. Kunter, M., Frenzel, A., Nagy, G., Baumert, J., & Pekrun, R. (2011). Teacher enthusiasm: Dimensionality and context specificity. Contemporary Educational Psychology, 36(4), 289–301.CrossRefGoogle Scholar
  43. Lazarides, R., & Ittel, A. (2013). Mathematics interest and achievement: What role do perceived parent and teacher support play? A longitudinal analysis. International Journal of Gender, Science and Technology, 5(3), 207–231.Google Scholar
  44. Liebendörfer, M. (2014). Self-determination and interest development of first-year mathematics students. Oberwolfach Reports, 11(4), 3132–3135.Google Scholar
  45. Liebendörfer, M., & Hochmuth, R. (2015). Perceived autonomy in the first semester of mathematics studies. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education. Prague: Charles University in Prague, Faculty of Education and ERME.Google Scholar
  46. Liebendörfer, M., & Hochmuth, R. (2013). Interest in mathematics and the first steps at the university. In B. Ubuz, C. Haser & M. A. Mariotti (Eds.), Proceedings of the 8th Conference of European Research in Mathematics Education (pp. 2386–2395). Ankara: Middle East Technical University.Google Scholar
  47. Liebendörfer, M., & Hochmuth, R. (2016). Perceived competence and incompetence in the first year of mathematics studies: Forms and situations. In R. Göller, R. Biehler, R. Hochmuth, & H.-G. Rück (Eds.), Didactics of mathematics in higher education as a scientific discipline-Conference Proceedings. Kassel: Universität Kassel.Google Scholar
  48. Liljedahl, P. (2008). Teachers’ insights into the relationship between beliefs and practice. In J. Maaß & W. Schlöglmann (Eds.), Beliefs and attitudes in mathematics education: New research results (pp. 33–44). Rotterdam: Sense Publishers.Google Scholar
  49. Liston, M., & O’Donoghue, J. (2009). Factors influencing the transition to university service mathematics: part 1‒a quantitative study. Teaching Mathematics Applications, 28(2), 77–87.CrossRefGoogle Scholar
  50. Long, J. F., & Hoy, A. W. (2006). Interested instructors: A composite portrait of individual differences and effectiveness. Teaching and Teacher Education, 22(3), 303–314.CrossRefGoogle Scholar
  51. Maaß, K. (2006). Bedeutungsdimensionen nützlichkeitsorientierter Beliefs. Ein theoretisches Konzept zu Vorstellungen über die Nützlichkeit von Mathematik und eine erste empirische Annäherung bei Lehramtsstudierenden. Mathematica Didactica, 29(2), 114–138.Google Scholar
  52. Manly, C. A., & Wells, R. S. (2015). Reporting the use of multiple imputation for missing data in higher education research. Research in Higher Education, 56(4), 397–409.CrossRefGoogle Scholar
  53. Martino, P., & Zan, R. (2011). Attitude towards mathematics: A bridge between beliefs and emotions. ZDM-The International Journal on Mathematics Education, 43(4), 471–482.CrossRefGoogle Scholar
  54. McLeod, D. B. (1992). Research on affect in mathematics education: A reconceptualization. In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 575–596). New York: Macmillan Publishing Co, Inc.Google Scholar
  55. Mischo, C., & Maaß, K. (2013). The effect of teacher beliefs on student competence in mathematical modeling: An intervention study. Journal of Education and Training Studies, 1(1), 19–38CrossRefGoogle Scholar
  56. Moore, R. C. (1994). Making the transition to formal proof. Educational Studies in Mathematics, 27(3), 249–266.CrossRefGoogle Scholar
  57. Pepin, B., & Roesken-Winter, B. (Eds.). (2015). From beliefs to dynamic affect systems in mathematics education. Cham: Springer International Publishing.Google Scholar
  58. Philipp, R. A. (2007). Mathematics teachers’ beliefs and affect. In F. K. Lester (Ed.), Second handbook of research on mathematics teaching and learning: A project of the National Council of Teachers of Mathematics (pp. 257–315). Charlotte, NC: Information Age Publication.Google Scholar
  59. Prendergast, M., & O’Donoghue, J. (2014). Students enjoyed and talked about the classes in the corridors’: pedagogical framework promoting interest in algebra. International Journal of Mathematical Education in Science and Technology, 45(6), 795–812.CrossRefGoogle Scholar
  60. Rach, S., & Heinze, A. (2013). Welche Studierenden sind im ersten Semester erfolgreich? Journal für Mathematik-Didaktik, 34(1), 121–147.CrossRefGoogle Scholar
  61. Rakoczy, K., Harks, B., Klieme, E., Blum, W., & Hochweber, J. (2013). Written feedback in mathematics: Mediated by students’ perception, moderated by goal orientation. Learning and Instruction, 27, 63–73.CrossRefGoogle Scholar
  62. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. New York: Wiley.CrossRefGoogle Scholar
  63. Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7(2), 147–177.CrossRefGoogle Scholar
  64. Schiefele, U., Krapp, A., & Winteler, A. (1992). Interest as a predictor of academic achievement: a meta-analysis of research. In K. A. Renninger, S. Hidi, & A. Krapp (Eds.), The role of interest in learning and development. Hillsdale, N.J.: Erlbaum.Google Scholar
  65. Schiefele, U., & Schreyer, I. (1994). Intrinsische Lernmotivation und Lernen. Ein Überblick zu Ergebnissen der Forschung. Zeitschrift Für Pädagogische Psychologie, 8, 1–13.Google Scholar
  66. Schiefele, U., Streblow, L., & Retelsdorf, J. (2013). Dimensions of teacher interest and their relations to occupational well-being and instructional practices. Journal for Educational Research Online/Journal für Bildungsforschung Online, 5(1), 7–37.Google Scholar
  67. Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic Press.Google Scholar
  68. Schukajlow, S. (2015). Effects of enjoyment and boredom on students’ interest in mathematics and vice versa. In K. Beswick, T. Muir & J. Wells (Eds.), Proceedings of the 39th Psychology of Mathematics Education conference (vol. 4, pp. 137–144). Hobart. Australia: PME.Google Scholar
  69. Schukajlow, S., & Krug, A. (2014). Are interest and enjoyment important for students’ performance? In P. Liljedahl, C. Nicol, S. Oesterle & D. Allan (Eds.), Proceedings of PME 38 and PME-NA 36 (vol. 1, pp. 129–136). Vancouver: PME.Google Scholar
  70. Schukajlow, S., & Krug, A. (2014b). Do multiple solutions matter? Prompting multiple solutions, interest, competence, and autonomy. Journal for Research in Mathematics Education, 45(4), 497–533.CrossRefGoogle Scholar
  71. Schukajlow, S., Krug, A., & Rakoczy, K. (2015). Effects of prompting multiple solutions for modelling problems on students’ performance. Educational Studies in Mathematics, 89(3), 393–417.CrossRefGoogle Scholar
  72. Schukajlow, S., Leiss, D., Pekrun, R., Blum, W., Müller, M., & Messner, R. (2011). Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations. Educational Studies in Mathematics, 79(2), 215–237.CrossRefGoogle Scholar
  73. Schukajlow, S., & Rakoczy, K. (2016). The power of emotions: Can enjoyment and boredom explain the impact of individual preconditions and teaching methods on interest and performance in mathematics? Learning and Instruction, 44, 117–127.CrossRefGoogle Scholar
  74. Schwippert, K., Feld, I., Doll, J., & Buchholtz, N. (2013). Vergleich motivationaler und volitionaler Bedingungen des selbst eingeschätzten Studienerfolgs von Lehramtsstudierenden in zwei Studienabschnitten. In S. Blömeke, A. Bremerich-Vos, G. Kaiser, G. Nold, H. Haudeck, J.-U. Keßler, & K. Schwippert (Eds.), Professionelle Kompetenzen im Studienverlauf: Weitere Ergebnisse zur Deutsch-, Englisch- und Mathematiklehrerausbildung aus TEDS-LT. New York: Waxmann.Google Scholar
  75. Selden, A. (2012). Transitions and proof and proving at tertiary level. In G. Hanna & M. de Villiers (Eds.), Proof and proving in mathematics education: The 19th ICMI Study (pp. 391–420). Dordrecht: Springer Netherlands.Google Scholar
  76. Singh, K., Granville, M., & Dika, S. (2002). Mathematics and science achievement: Effects of motivation, interest, and academic engagement. The Journal of Educational Research, 95(6), 323–332.CrossRefGoogle Scholar
  77. Sonnert, G., Sadler, P. M., Sadler, S. M., & Bressoud, D. M. (2015). The impact of instructor pedagogy on college calculus students’ attitude toward mathematics. International Journal of Mathematical Education in Science and Technology, 46(3), 370–387.CrossRefGoogle Scholar
  78. Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 495–511). New York: Macmillan.Google Scholar
  79. Tall, D. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5–24.CrossRefGoogle Scholar
  80. Törner, G., & Pehkonen, E. (1996). On the structure of mathematical belief systems. International Reviews on Mathematical Education (ZDM), 28(4), 109–112.Google Scholar
  81. Valås, H., & Søvik, N. (1994). Variables affecting students’ intrinsic motivation for school mathematics: Two empirical studies based on Deci and Ryan’s theory on motivation. Learning and Instruction, 3(4), 281–298.CrossRefGoogle Scholar
  82. Wendland, M., & Rheinberg, F. (2004). Welche Motivationsfaktoren beeinflussen die Mathematikleistung? Eine Längsschnittanalyse. In J. Doll & M. Prenzel (Eds.), Bildungsqualität von Schule: Lehrerprofessionalisierung, Unterrichtsentwicklung und Schülerförderung als Strategien der Qualitätsverbesserung (pp. 309–328). Münster: Waxmann.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Institut für Didaktik der Mathematik und PhysikLeibniz Universität HannoverHanoverGermany
  2. 2.Institut für Didaktik der Mathematik und der InformatikWestfälische Wilhelms-Universität MünsterMünsterGermany

Personalised recommendations