Skip to main content

Advertisement

Log in

Professional competences of teachers for fostering creativity and supporting high-achieving students

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This paper addresses an important task teachers face in class: the identification and support of creative and high-achieving students. In particular, we examine whether primary teachers (1) have acquired professional knowledge during teacher education that is necessary to foster creativity and to teach high-achieving students, and whether they (2) possess the situation-specific skills necessary to do so. For this purpose, (1) the knowledge of German primary school teachers who participated in the TEDS-M study at the end of teacher education is analyzed. (2), a subset of these teachers interpreted classroom video scenes that require identifying and supporting creative and high-achieving students in the longitudinal follow-up study to TEDS-M (TEDS-FU) after 3 years of work experience. Contingency analyses between teachers’ professional knowledge and their skills in identifying and supporting mathematically creative and high-achieving students were carried out. The analyses revealed that those teachers who have difficulties in logical reasoning and understanding structural aspects of mathematics also have difficulties in identifying and supporting creative and high-achieving students. It was difficult for them to identify students’ thinking processes based on structural reflections and pattern recognition; moreover, they had difficulty in further developing mathematically rich answers by students. In line with these results, teachers with strong professional knowledge were able to identify and support mathematically creative and high-achieving students. Thus, the study reveals that a connection between teachers’ professional knowledge and their skills in identifying and supporting mathematically creative and high-achieving students exists but that many future and early career teachers seem to have deficiencies in these respects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. Missing responses within a test unit were considered as false answers unless teachers did not respond to or work on an entire test unit (such as one of the three video vignette tests). In that case, missing responses were coded as missing.

References

  • Balka, D. S. (1974). Creative ability in mathematics. Arithmetic Teacher, 21, 633–636.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389–407.

    Article  Google Scholar 

  • Baumert, J., & Kunter, M. (2011). Das Kompetenzmodell von COACTIV. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Professionelle Kompetenz von Lehrkräften. Ergebnisse des Forschungsprogramms COACTIV (pp. 29–53). Münster: Waxmann Verlag GmbH.

    Google Scholar 

  • Blömeke, S., Gustafsson, J.-E., & Shavelson, R. (2015). Beyond dichotomies: Competence viewed as a continuum. Zeitschrift für Psychologie, 223, 3–13.

    Article  Google Scholar 

  • Blömeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W. H. (Eds.). (2014). International perspectives on teacher knowledge, beliefs and opportunities to learn. Dordrecht: Springer.

    Google Scholar 

  • Blömeke, S., & Kaiser, G. (2014). Theoretical framework, study design and main results of TEDS-M. In S. Blömeke, F.-J. Hsieh, G. Kaiser, & W. H. Schmidt (Eds.), International perspectives on teacher knowledge, beliefs and opportunities to learn (pp. 19–47). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Blömeke, S., Kaiser, G., & Lehmann, R. (Eds.). (2008). Professionelle Kompetenz angehender Lehrerinnen und Lehrer: Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender und –refendare: Erste Ergebnisse zur Wirksamkeit der Lehrerausbildung. Münster: Waxmann.

    Google Scholar 

  • Blömeke, S., Kaiser, G., Döhrmann, M., Suhl, U., & Lehmann, R. (2010). Mathematisches und mathematikdidaktisches Wissen angehender Primarstufenlehrkräfte im internationalen Vergleich. In S. Blömeke, G. Kaiser, & R. Lehmann (Eds.), TEDS-M 2008: Professionelle Kompetenz und Lerngelegenheiten angehender Primarstufenlehrkräfte im internationalen Vergleich (pp. 195–251). Münster: Waxmann Verlag.

    Google Scholar 

  • Bolden, D., Harries, A., & Newton, D. (2010). Pre-service primary teachers’ conceptions of creativity in mathematics. Educational Studies in Mathematics, 73(2), 143–157.

    Article  Google Scholar 

  • Buchholtz, N., Kaiser, G., & Blömeke, S. (2013). Die Erhebung mathematikdidaktischen Wissens: Konzeptualisierung einer komplexen Domäne. Journal für Mathematikdidaktik, 35, 101–128.

    Article  Google Scholar 

  • Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. C. (1988). Expert-novice differences in perceiving and processing visual information. Journal of Teacher Education, 39, 25–31.

    Article  Google Scholar 

  • Depaepe, F., Verschaffel, L., & Kelchtermanns, G. (2013). Pedagogical content knowledge: A systematic review of the way in which the concept has pervaded mathematical educational research. Teaching and Teacher Education, 34, 12–25.

    Article  Google Scholar 

  • Diezmann, C. M., & Watters, J. J. (2000). Catering for mathematically gifted elementary students: Learning from challenging tasks. Gifted Child Today, 23(4), 14–19, 52.

  • Diezmann, C. M, & Watters, J. J. (2002). Summing up the education of mathematically gifted students. In Proceedings 25th annual conference of the mathematics education research group of Australasia (pp. 219–226). Auckland.

  • Hattie, J. A. C. (2009). Visible learning: A synthesis of over 800 meta-analyses relating to achievement. London, UK: Routledge.

    Google Scholar 

  • Haylock, D. W. (1987). A framework for assessing mathematical creativity in school children. Education Studies in Mathematics, 18(1), 59–74.

    Article  Google Scholar 

  • Hong, E., & Aqui, Y. (2004). Cognitive and motivational characteristics of adolescents gifted in mathematics: Comparisons among students with different types of giftedness. Gifted Child Quarterly, 48, 191–201.

    Article  Google Scholar 

  • Hoth, J., Schwarz, B., Kaiser, G., Busse, A., König, J. & Blömeke, S. (2016). Uncovering predictors of disagreement: Ensuring the quality of expert ratings. ZDM Mathematics Education, 48(1–2), 83–98.

    Article  Google Scholar 

  • Kaiser, G., Busse, A., Hoth, J., König, J., & Blömeke, S. (2015). About the complexities of video-based assessments: Theoretical and methodological approaches to overcoming shortcomings of research on teachers’ competence. International Journal of Science and Mathematics Education, 13(2), 369–387.

    Article  Google Scholar 

  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: University of Chicago Press.

    Google Scholar 

  • Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2011). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project. New York: Springer.

    Google Scholar 

  • Mann, E. L. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–260.

    Google Scholar 

  • Mann, E. L. (2009). The search for mathematical creativity: Identifying creative potential in middle school students. Creative Research Journal, 21(4), 338–348.

    Article  Google Scholar 

  • Mayring, P. (2015). Qualitative content analysis: theoretical background and procedures. In A. Bikner-Ahsbahs, C. Knipping, & N. Presmeg (Eds.), Approaches to qualitative research in mathematics education. Examples of methodology and methods (pp. 365–380). Dordrecht: Springer.

    Google Scholar 

  • Nadjafikhah, M., Yaftian, N., & Bakhshalizadeh, S. (2012). Mathematical creativity: some definitions and characteristics. Procedia—Social and Behavioral Sciences, 31, 285–291.

    Article  Google Scholar 

  • Peterson, P., Fennema, E., Carpenter, T. P., & Loef, M. (1989). Teachers’ pedagogical content beliefs in mathematics. Cognition and Instruction, 6, 1–40.

    Article  Google Scholar 

  • Renzulli, J. S. (2004). Introduction to identification of students for gifted and talented programs. In J. S. Renzulli & S. I. Reis (Eds.), Essential readings in gifted education: Identification of students for gifted and talented programs (pp. xxxiii–xxxiv). London: Sage.

    Google Scholar 

  • Rotigel, J., & Fello, S. (2004). Mathematically gifted students: How can we meet their needs? Gifted Child Today, 27, 46–51.

    Article  Google Scholar 

  • Shayshon, B., Gal, H., Tesler, B., & Ko, E.-S. (2014). Teaching mathematically talented students: a cross-cultural study about their teachers’ views. Educational Studies in Mathematics, 87, 409–438.

    Article  Google Scholar 

  • Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (Eds.). (2011). Mathematics teacher noticing. Seeing through teachers’ eyes. New York: Routledge.

    Google Scholar 

  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–21.

    Article  Google Scholar 

  • Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., et al. (2012). Policy, practice, and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study in Mathematics (TEDS-M). Amsterdam: IEA.

    Google Scholar 

  • Wagner, H., & Zimmermann, B. (1986). Identification and fostering of mathematically gifted children. In A. J. Cropley, K. K. Urban, H. Wagner, & W. Wieczerkowsky (Eds.), Giftedness: A continuing worldwide challenge (pp. 273–284). New York: Trillum Press.

    Google Scholar 

  • Weinert, F. E. (2001). Concept of competence: a conceptual clarification. In D. Rychen & L. Salganik (Eds.), Defining and selecting key competencies (pp. 45–65). Seattle: Hogrefe and Huber.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Hoth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoth, J., Kaiser, G., Busse, A. et al. Professional competences of teachers for fostering creativity and supporting high-achieving students. ZDM Mathematics Education 49, 107–120 (2017). https://doi.org/10.1007/s11858-016-0817-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-016-0817-5

Keywords

Navigation