, Volume 48, Issue 6, pp 721–737 | Cite as

Mathematical Working Spaces in schooling: an introduction

  • Alain Kuzniak
  • Denis TanguayEmail author
  • Iliada Elia
Survey Paper


The theoretical and methodological model of Mathematical Working Space (MWS) is introduced in this paper. For over 10 years, the model has been the object of collaborative research among various researchers, generally coming from French and Spanish speaking countries. Articulating epistemological and cognitive aspects, the MWS model is aimed at providing a tool for the specific study of mathematical work in which students and teachers are effectively engaged during mathematics sessions. The abstract space thus conceived refers to a structure organized in a way that allows the analysis of the mathematical activity of individuals dealing with mathematical problems. Thus, analyzing mathematical work through the lens of MWS enables tracking down how meaning is progressively constructed, as a process of bridging the epistemological and the cognitive perspectives—these being modelled as two planes at different levels in the diagrammatic structure—in accordance with different specific yet intertwined genetic developments. Each is identified as a genesis related to a specific dimension in the model: semiotic, instrumental and discursive geneses. A general overview of the different papers included in this issue is given, and shows how the model can be used to study different tasks, teaching situations and activities set in specific mathematical fields or domains. Some perspectives are finally drawn, while reflecting on the possibility of ‘networking’ different theoretical frames with the MWS framework. Indeed, the latter is not proposed as a holistic theory, but rather should function as a tool interacting strongly with other approaches.


Mathematical Working Space Epistemological perspective Cognitive perspective Semiotic Instrumental Discursive geneses 


  1. Artigue, M. (2002). Learning mathematics in a CAS environment: the genesis of a reflection about instrumentation and the dialectics between technical and conceptual work. International Journal of Computers for Mathematical Learning, 7, 245–274.CrossRefGoogle Scholar
  2. Arzarello, F. (2006). Semiosis as a multimodal process. Revista Latinoamericana de Investigación en Matemática Educativa (RELIME), 9(1), 267–299.Google Scholar
  3. Berthelot, J. M. (2008). L’emprise du vrai. Connaissance scientifique et modernité. Paris: Presses universitaires de France.Google Scholar
  4. Boaler, J. (2002). Exploring the nature of mathematical activity: using theory, research and working hypotheses to broaden conception of mathematics knowing. Educational Studies in Mathematics, 51, 3–21.CrossRefGoogle Scholar
  5. Brousseau, G. (2002a). Cadres, jeux de cadres et théories des situations. Actes de la journée Douady (pp. 73–82). Irem: Université Paris-Diderot.Google Scholar
  6. Brousseau, G. (2002b). Theory of didactical situations in mathematics. New York: Springer.Google Scholar
  7. Chevallard, Y. (1985). La transposition didactique—Du savoir savant au savoir enseigné. Grenoble: La Pensée sauvage.Google Scholar
  8. Cogan, L. S., & Schmidt, W. H. (1999). An examination of instructional practices in six countries. In G. Kaiser, E. Luna, & I. Huntley (Eds.), International Comparisons in Mathematics Education (pp. 68–85). London: Falmer Press.Google Scholar
  9. Coutat, S., & Richard, P. R. (2011). Les figures dynamiques dans un espace de travail mathématique pour l’apprentissage des propriétés mathématiques. Annales de Didactique et de Sciences Cognitives, 16, 97–126.Google Scholar
  10. Derouet, C., & Parzysz, B. (2016). How can histograms be useful for introducing continuous probability distributions? ZDM Mathematics Education. doi: 10.1007/s11858-016-0769-9. (This issue) Google Scholar
  11. Desanti, J. T. (1975). Qu’est ce qu’un problème épistémologique ? In J. T. Desanti (Ed.), La philosophie silencieuse (pp. 110–132). Paris: Le Seuil.Google Scholar
  12. Drouhard, J.-P. (2006). Prolégomènes « épistémographiques » à l’étude des transitions dans l’enseignement des mathématiques. In N. Bednarz & C. Mary (Eds.), Actes du 3e colloque Espace Mathématique Francophone: L’enseignement des mathématiques face aux défis de l’école et des communautés, CD-Rom. Sherbrooke: Université de Sherbrooke.Google Scholar
  13. Duval, R. (1993). Registres de représentation sémiotique et fonctionnement cognitif de la pensée. Annales de Didactique et de Sciences Cognitives, 5, 37–65.Google Scholar
  14. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leur fonctionnements. Annales de Didactique et de Sciences Cognitives, 10, 5–53.Google Scholar
  15. Eco, U. (1988). Le signe. Trans: J.-M. Klinkenberg. Bruxelles: Éditions Labor.Google Scholar
  16. Elia, I., Özel, S., Gagatsis, A., Panaoura, A., & Yetkiner Özel, Z. E. (2016). Students’ mathematical work on absolute value: Focusing on conceptions, errors and obstacles. ZDM Mathematics Education. doi: 10.1007/s11858-016-0780-1. (This issue) Google Scholar
  17. Ernest, P. (1999). Forms of knowledge in mathematics and mathematics education: philosophical and rhetorical perspectives. Educational Studies in Mathematics, 38(1), 67–83.CrossRefGoogle Scholar
  18. Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24, 139–162.CrossRefGoogle Scholar
  19. Freudenthal, H. (1971). Geometry between the devil and the deep sea. Educational Studies in Mathematics, 3, 413–435.CrossRefGoogle Scholar
  20. Giaquinto, M. (2005). Mathematical activity. In P. Macosu, K. F. Jorgonsen, & S. A. Pedersen (Eds.), Visualization, explanation and reasoning styles in mathematics (pp. 75–87). New-York: Springer.CrossRefGoogle Scholar
  21. Gillies, D. (Ed.). (1992). Revolutions in mathematics. Oxford: Oxford Science Publications, The Clarendon Press.Google Scholar
  22. Gómez-Chacón, I., & Kuzniak, A. (2015). Networking of theories as a research practice in mathematics education. Spaces for geometric work: figural, instrumental, and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13, 201–226.CrossRefGoogle Scholar
  23. Gómez-Chacón, I., Romero Albaladejo, I. M., & del Mar García López, M. (2016). Zig-zagging in geometrical reasoning in technological collaborative environments: a mathematical working space-framed study concerning cognition and affect. ZDM Mathematics Education. doi: 10.1007/s11858-016-0755-2. (This issue) Google Scholar
  24. Gonseth, F. (1945–1952). La géométrie ou le problème de l’espace. Neuchatel: Editions du Griffon.Google Scholar
  25. Granger, G. G. (1963). Essai d’une philosophie du style. Paris: Armand Colin, rééd. (Odile Jacob 1987).Google Scholar
  26. Guzman, I., & Kuzniak, A. (2006). Paradigmes géométriques et géométrie enseignée au Chili et en France. Paris: Irem Paris-Diderot.Google Scholar
  27. Hadamard, J. (2011–1975). Essai sur la psychologie de l’invention dans le domaine mathématique, suivi de Poincaré, H., L’invention mathématique. Paris: Éditions Jacques Gabay.Google Scholar
  28. Hanna, G., & de Villiers, M. (Eds.). (2012). ICMI Study 19 Book: Proof and proving in mathematics education. Dordrecht: Springer.Google Scholar
  29. Hitt, F., & González-Martín, A. (2015). Covariation between variables in a modelling process: the ACODESA (Collaborative learning, Scientific debate and Self-reflexion) method. Educational Studies in Mathematics, 88(2), 201–219.CrossRefGoogle Scholar
  30. Hitt, F., Saboya, M., & Cortés, C. (2016). An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: triangular numbers. ZDM Mathematics Education. doi: 10.1007/s11858-015-0749-5 (This issue).Google Scholar
  31. Houdement, C., & Kuzniak, A. (1999). Un exemple de cadre conceptuel pour l’étude de l’enseignement de la géométrie en formation des maîtres. Educational Studies in Mathematics, 40(3), 283–312.CrossRefGoogle Scholar
  32. Kidron, I. (2016). Epistemology and networking theories. Educational Studies in Mathematics, 91(2), 149–163.CrossRefGoogle Scholar
  33. Kuhn, T. S. (1966). The structure of scientific revolutions (2nd ed.). Chicago: University of Chicago Press.Google Scholar
  34. Kuzniak, A., Nechache, A., & Drouhard, J.-P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education. doi: 10.1007/s11858-016-0773-0.Google Scholar
  35. Kuzniak, A., & Rauscher, J.-C. (2011). How do teachers’ approaches to geometric work relate to geometry students’ learning difficulties? Educational Studies in Mathematics, 77, 129–147.CrossRefGoogle Scholar
  36. Lagrange, J.-B., & Hoyles, C. (Eds.). (2009). Mathematical education and digital technologies: rethinking the terrain. New York: Springer.Google Scholar
  37. Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  38. Lave, J., & Wenger, E. (1990). Situated learning: Legitimate peripheral participation. Cambridge, UK: Cambridge University Press.Google Scholar
  39. Legrand, M. (2001). Scientific debate in mathematics courses. In D. Holton (Ed.), The teaching and learning of mathematics at university level: an ICMI study (pp. 127–135). Dordrecht: Kluwer Academic Publishers.Google Scholar
  40. Lerouge, A. (2000). La notion de cadre de rationalité. A propos de la droite au collège. Recherches en Didactique des Mathématiques, 20(2), 171–208.Google Scholar
  41. Minh, T. K., & Lagrange, J.-B. (2016). Connected functional working spaces: a framework for the teaching and learning of functions at upper secondary level. ZDM Mathematics Education. doi: 10.1007/s11858-016-0774-z.Google Scholar
  42. Montoya, E., & Vivier, L. (2014). Les changements de domaine dans le cadre des Espaces de Travail Mathématique. Annales de Didactique et de Sciences Cognitives, 19, 73–101.Google Scholar
  43. Montoya, E., & Vivier, L. (2016). Mathematical working space and paradigms as an analysis tool for the teaching and learning of analysis. ZDM Mathematics Education. doi: 10.1007/s11858-016-0777-9.Google Scholar
  44. Oktaç, A., & Vivier, L. (2016). Conversion, change, transition in research about analysis. In B. R. Hodgson, A. Kuzniak, & J. B. Lagrange (Eds.), The didactics of mathematics: approaches and issues. A homage to Michèle Artigue (pp. 87–122). New York: Springer.CrossRefGoogle Scholar
  45. Peirce, C. S. (1931). Collected Papers, vols. 1–16. Cambridge: Harvard University Press.Google Scholar
  46. Pluvinage, F., Carrión Miranda, V., & Adjiage, R. (2016). Facilitating the genesis of functional working spaces in guided explorations. ZDM Mathematics Education. doi: 10.1007/s11858-016-0791-y.Google Scholar
  47. Rabardel, P. (1995). Les hommes et les technologies. Une approche cognitive des instruments contemporains. Paris: Armand Colin.Google Scholar
  48. Radford, L. (2016). Epistemology as a research category in mathematics teaching and learning. In B. R. Hodgson, A. Kuzniak, & J. B. Lagrange (Eds.), The didactics of mathematics: approaches and issues. A homage to Michèle Artigue (pp. 31–36). New York: Springer.Google Scholar
  49. Radford, L., Schubring, G., & Seeger, F. (Eds.). (2008). Semiotics in mathematics education. Rotterdam: Sense Publishers.Google Scholar
  50. Reichenbach, H. (1938). Experience and prediction. Chicago: University of Chicago Press.Google Scholar
  51. Richard, P. R., Oller Marcén, A. M., & Meavilla Seguí, V. (2016). The concept of proof in the light of mathematical work. ZDM Mathematics Education, 48(6). doi: 10.1007/s11858-016-0805-9. (This issue)
  52. Ruthven, K. (2014). From networked theories to modular tools? In A. Bikner-Ahsbahs & S. Prediger (Eds.), Networking of theories as a research practice in mathematics education (pp. 267–280). Switzerland: Springer.Google Scholar
  53. Santos Trigo, M., Moreno Armella, L., & Camacho Machín, M. (2016). Problem solving and the use of digital technologies within the mathematical working space framework. ZDM Mathematics Education, 48(6). doi: 10.1007/s11858-016-0757-0. (This issue).
  54. Sierpinska, A. (2004). Research in mathematics education through a keyhole: task problematization. For the learning of mathematics, 24(2), 7–15.Google Scholar
  55. Tall, D. (1991). Advanced mathematical thinking. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  56. Tanguay, D. (2015). Circulation et coordination dans les espaces de travail, pour une activité articulant géométrie et arithmétique. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard (Eds.), Actes du 4e symposium Espaces de Travail Mathématique (ETM 4) (pp. 69–85). Spain: Universidad Complutense de Madrid.Google Scholar
  57. Tanguay, D., Kuzniak, A., & Gagatsis, A. (2015). Synthesis of Topic 1—The mathematical work and mathematical working spaces. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard (Eds.), Actes du 4e symposium Espaces de Travail Mathématique (ETM 4) (pp. 20–38). Spain: Universidad Complutense de Madrid.Google Scholar
  58. Tanguay, D., & Venant, F. (2016). The semiotic and conceptual genesis of angle. ZDM Mathematics Education. doi: 10.1007/s11858-016-0789-5. (This issue) Google Scholar
  59. Thom, R. (1974). Mathématiques modernes et mathématiques de toujours, suivi de Les mathématiques « modernes » , une erreur pédagogique et philosophique ? In R. Jaulin (Ed.), Pourquoi la mathématique ? (pp. 10–18). Paris: Éditions.Google Scholar
  60. Thurston, W. P. (1994). On proof and progress in mathematics. Bulletin of the American Mathematical Society, 30(2), 161–177.CrossRefGoogle Scholar
  61. Vandebrouck, F. (Ed.). (2013). Mathematics classrooms students’ activities and teachers’ practices. Rotterdam: Sense Publishers.Google Scholar
  62. Veldhuis, M., & van den Heuvel-Panhuizen, M. (2014). Primary school teachers’ assessment profiles in mathematics education. PLoS One, 9(1), e86817.CrossRefGoogle Scholar
  63. Vergnaud, G. (2001). Forme opératoire et forme prédicative de la connaissance. In J. Portugais (Ed.), Actes du colloque GDM (pp. 1–22). Montreal: Université de Montréal.Google Scholar
  64. Verret, M. (1975). Le temps des études. Paris: Librairie Honoré Champion.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Université Paris DiderotParisFrance
  2. 2.Université du Québec à MontréalMontrealCanada
  3. 3.University of CyprusNicosiaCyprus

Personalised recommendations