ZDM

, Volume 48, Issue 6, pp 925–933 | Cite as

The epistemic, the cognitive, the human: a commentary on the mathematical working space approach

Commentary Paper

Abstract

This article is a commentary on the mathematical working space (MWS) approach and draws on the articles contained in this ZDM issue. The article is divided into three parts. In the first part I discuss the place of the MWS approach among the French theories of didactique des mathématiques. In the second part I outline what I think are the central ideas of the MWS approach. I conclude the article with a sketch of what seems to me to be its accomplishments and challenges, focusing mainly on the epistemological and cognitive stances that the MWS approach conveys in order to elucidate the manner in which this approach theoretically assumes that things are known and learned.

Keywords

Cognition Epistemology Activity Theory Conceptions of the student Collective versus individual learning 

References

  1. Andler, D. (2004). Introduction aux sciences cognitives [Introduction to cognitive sciences]. Paris: Gallimard.Google Scholar
  2. Anghileri, J. (1989). An investigation of young children’s understanding of multiplication. Educational Studies in Mathematics, 20(4), 367–385.CrossRefGoogle Scholar
  3. Artigue, M. (1990). Épistémologie et didactique [Epistemology and didactics]. Recherches En Didactique Des Mathématiques, 10(2–3), 241–286.Google Scholar
  4. Artigue, M. (2013a). L’impact curriculaire des technologies sur l’éducation mathématique. Cuadernos de investigación y formación en Educación Matemática, 11, 313–323.Google Scholar
  5. Artigue, M. (2013b). Teaching and learning mathematics in the digital era: Challenges and perspectives. In Y. Baldwin (Ed.), Proceedings of HTEM, July 14th–19th, 2013. Brasil.Google Scholar
  6. Brousseau, G. (1989). Les obstacles épistémologiques et la didactique des mathématiques [Epistemological obstacles and didactic of mathematics]. In N. Bednarz & C. Garnier (Eds.), Construction des savoirs, obstacles et conflits (pp. 41–64). Montréal: les éditions Agence d’Arc inc.Google Scholar
  7. Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer.Google Scholar
  8. Brousseau, G. (2006). Mathematics, didactical engineering and observation. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the 30th conference of the international group for the psychology of mathematics education (Vol. 1, pp. 3–18). Prague, Czech Republic.Google Scholar
  9. Chevallard, Y. (1985). La transposition didactique [The didactical transposition] (p. 1991). France: La pensée sauvage éditions. Deuxième édition.Google Scholar
  10. Chevallard, Y. (1997). Familière et problématique, la figure du professeur [Familiar and enigmatic, the figure of the teacher]. Recherche en didactique des mathématiques, 17(3), 17–54.Google Scholar
  11. Chevallard, Y. (2006). Steps towards a new epistemology in mathematics education. In M. Bosch (Ed.), Proceedings of the 4th conference of the european society for research in mathematics education (CERME4) (pp. 21–30). Sant Feliu de Guíxols: CERME.Google Scholar
  12. Cobb, P. (1987). An investigation of young children’s academic arithmetic contexts. Educational Studies in Mathematics, 18(2), 109–124.CrossRefGoogle Scholar
  13. de Vega, M. (1986). Introduccion a la psicologia cognitive [Introduction to cognitive psychology]. Mexico: Alianza Editorial Mexicana.Google Scholar
  14. Descartes, R. (1637). Discours de la méthode. Texte et commentaire par Étienne Gilson, 4e édition. [Discourse on Method]. Paris: Librairie Philosophique Vrin.Google Scholar
  15. Duval, R. (1995). Sémoisis et pensée humaine [Semiosis and human thinking]. Bern: Lang.Google Scholar
  16. Duval, R. (1998). Signe et objet, I et II. Annales De Didactique Et De Sciences Cognitives, IREM De Strasbourg, 6, 139–196.Google Scholar
  17. Duval, R. (2000). Basic issues for research in mathematics education. In T. Nakahara & M. Koyama (Eds.), Proceedings of the 24th conference of the international group for the psychology of mathematics education (PME-24) (Vol. 1, pp. 55–69). Hiroshima University, Japan.Google Scholar
  18. Elia, I., Özel, S., Gagatsis, A., Panaoura, A., & Yetkiner Özel, Z. E. (2016). Students’ mathematical work on absolute value: Focusing on conceptions, errors and obstacles. ZDM Mathematics Education, 48(6), this issue. doi:10.1007/s11858-016-0780-1.
  19. Elias, N. (1991). The society of individuals. Oxford: Basil Blackwell.Google Scholar
  20. Foucault, M. (2003). Society must be defended. Lectures at the Collège de France 1975–76. New York: Picador.Google Scholar
  21. Friedrich, P. (1970). Shape in grammar. Language, 46(2), 379–407.CrossRefGoogle Scholar
  22. Glaeser, G. (1999). Une introduction à la didactique expérimentale des mathématiques [An introduction to the experimental didactic of mathematics]. Grenoble: La pensée sauvage.Google Scholar
  23. Guin, D., & Trouche, L. (2004). Intégration des TICE: Concevoir, expérimenter et mutualiser des ressources pédagogiques. Repères, 55, 81–100.Google Scholar
  24. Harré, R., & Gillett, G. (1994). The discursive mind. London: Sage.Google Scholar
  25. Hitt, F., Saboya, M., & Cortés, C. (2016). An arithmetic-algebraic work space for the promotion of arithmetic and algebraic thinking: Triangular numbers. ZDM Mathematics Education, 48(6), this issue. doi:10.1007/s11858-015-0749-5.
  26. Hume, D. (1921). An enquiry concerning human understanding and selections from A treatise of human nature. Chicago: The Open Court Publishing Co. (Original work published 1777).Google Scholar
  27. Kahane, J. (2003). Est-il bien utile d’enseigner les mathématiques? [Is it useful to teach mathematics?]. Canadian School Mathematics Forum/Forum Canadien Sur L’enseignement Des Mathématiques. Montréal, May 16–18, 2003, pp. 1–9.Google Scholar
  28. Kant, I. (2003). Critique of pure reason (N. K. Smith, Trans.). New York: Palgrave Macmillan (Original work published 1781).Google Scholar
  29. Kotovsky, K., & Simon, H. A. (1990). What makes some problems really hard: Explorations in the problem space of difficulty. Cognitive Psychology, 22, 143–183.CrossRefGoogle Scholar
  30. Kuzniak, A., Nechache, A., & Drouhard, J.-P. (2016). Understanding the development of mathematical work in the context of the classroom. ZDM Mathematics Education, 48(6), this issue. doi:10.1007/s11858-016-0773-0.
  31. Kuzniak, A., Tanguay, D., & Elia, I. (2016). Mathematical working spaces in schooling: an introduction. ZDM Mathematics Education. doi:10.1007/s11858-016-0812-x.Google Scholar
  32. Lakoff, G., & Núñez, R. (2000). Where mathematics comes from. New York: Basic Books.Google Scholar
  33. Leont’ev, A. N. (1978). Activity, consciousness, and personality. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  34. Luria, A. R. (1976). Cognitive development, its cultural and social foundations. Cambridge, Ma London: Harvard University Press.Google Scholar
  35. Luria, A. R. (1979). The making of mind. Cambridge: Harvard University Press.Google Scholar
  36. Mikhailov, F. T. (1980). The riddle of the self. Moscow: Progress Publishers.Google Scholar
  37. Montoya Delgadillo, E., & Vivier, L. (2016). Mathematical working space and paradigms as an analysis tool for the teaching and learning of analysis. ZDM Mathematics Education, 48(6), this issue. doi:10.1007/s11858-016-0777-9.
  38. Piaget, J. (1979). L’épistémologie génétique [Genetic epistemology]. Paris: Presses Universitaires de France.Google Scholar
  39. Radford, L. (2014). On teachers and students: An ethical cultural-historical perspective. In P. Liljedahl, C. Nicol, S. Oesterle, & D. Allan (Eds.), Proceedings of the joint meeting of PME 38 and PME-NA 36 (Vol. 1, pp. 1–20). Vancouver: PME.Google Scholar
  40. Radford, L. (in press). The theory of objectification and its place among sociocultural research in mathematics education. International Journal for Research in Mathematics Education. Google Scholar
  41. Richard, P. R., Oller Marcén, A. M., & Meavilla Seguí, V. (2016). The concept of proof in the light of mathematical work. ZDM Mathematics Education, 48(6), this issue. doi:10.1007/s11858-016-0805-9.
  42. Roth, W.-M., & Radford, L. (2011). A cultural historical perspective on teaching and learning. Rotterdam: Sense Publishers.CrossRefGoogle Scholar
  43. Salin, M.-H., Clanché, P., & Sarrazy, B. (2005). Sur la théorie des situations didactiques [On the theory of didactical situations]. Grenoble: La pensée sauvage.Google Scholar
  44. Santos-Trigo, M., Moreno-Armella, L., & Camacho-Machín, M. (2016). Problem solving and the use of digital technologies within the mathematical working space framework. ZDM Mathematics Education, 48(6), this issue. doi:10.1007/s11858-016-0757-0.
  45. Shweder, R., & LeVine, R. (1984). Culture theory. Essays on mind, self, and emotion. Cambridge: Cambridge University Press.Google Scholar
  46. Sierpinska, A., & Lerman, S. (1996). Epistemologies of mathematics and of mathematics education. In B. Bishop, M. Clements, C. Keitel-Kreidt, J. Kilpatrick, C. Laborde (Eds.), International handbook of mathematics education (pp. 827–876). Kluwer Academic Publishers.Google Scholar
  47. Trouche, L. (2003). From artifact to instrument: Mathematics teaching mediated by symbolic calculators. Interacting with Computers, 15(6), 783–800.CrossRefGoogle Scholar
  48. Vergnaud, G. (1985). Concepts et schèmes dans la théorie opératoire de la représentation [Concepts and schemas in the operational theory of representation]. Psychologie Française, 30(3–4), 245–252.Google Scholar
  49. Vergnaud, G. (1990). La théorie des champs conceptuels [The theory of conceptual fields]. Recherche En Didactique Des Mathématiques, 10, 133–170.Google Scholar
  50. Vergnaud, G. (2001). Forme opératoire et forme prédicative de la connaissance [Operational and predicative forms of knowledge]. In J. Portugais (Ed.), Actes du colloque GDM-2001 (pp. 1–22). Montréal: Université de Montréal.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Université LaurentienneSudburyCanada

Personalised recommendations