Skip to main content
Log in

Lesson Play tasks as a creative venture for teachers and teacher educators

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

This study focuses on instances of creativity in the design of Lesson Play tasks and in prospective teachers’ responses to the tasks. A Lesson Play task assumes a theatrical interpretation of the word ‘play’ and requires teachers to write a script for an imaginary interaction between a teacher-character and student-characters, attending to a particular instructional situation. These instructional interactions are triggered by ‘prompts’ that present an unexpected student claim, or a particular erroneous conclusion or reasoning. I present a brief overview of the various iterations of task development. I then demonstrate instances of creativity in the design of Lesson Play tasks by teacher educators and in responses to the various prompts in the tasks by prospective teachers. The prompts for the plays and teachers’ responses to the tasks are analysed using an extension of Lev-Zamir and Leikin’s model of Creativity in Mathematics Teaching. While the original model attends to teacher-directed creativity and student-directed creativity, the proposed extension attends to mathematics educators in the role of teachers, and teachers in the role of students. I illustrate cases of pedagogical flexibility and originality as well as of mathematical creativity and originality, noting that multiple facets of creativity can be recognized in particular instructional choices. I conclude that Lesson Play tasks present a fruitful avenue for displaying and supporting teachers’ creativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, J.E., Cullen, C., Sarama, J., Clements, D.H., Klanderman, D., Miller, A.L., & Rumsey, C. (2011). Children’s unit concepts in measurement: a teaching experiment spanning grades 2 through 5. ZDMThe International Journal on Mathematics Education, 43, 637–650.

  • Beghetto, R. A., & Kaufman, J. C. (2009). Intellectual estuaries: Connecting learning and creativity in programs of advanced academics. Journal of Advanced Academics, 20(2), 296–324.

    Article  Google Scholar 

  • Ching, T. P. (1997). An experiment to discover mathematical talent in a primary school in Kampong Air. ZDM—The International Journal on Mathematics Education, 29, 94–96.

    Article  Google Scholar 

  • Galilei, G. (1638/1991). Dialogues concerning two new sciences. (Translated by Crew, H and de Salvio, A.). Amherst, NY: Prometeus Books.

  • Herbst, P., Chazan, D., Chen, C., Chieu, V. M., & Weiss, M. (2011). Using comics-based representations of teaching, and technology, to bring practice to university “methods” courses. ZDM—The International Journal of Mathematics Education, 43(1), 91–104.

    Article  Google Scholar 

  • Holton, D. (2002). A first lecture in Graph Theory. Teaching Mathematics and Its Applications, 21(3), 105–119.

    Article  Google Scholar 

  • Kamii, C. (2006). Measurement of length: How can we teach it better? Teaching Children Mathematics, 13(3), 154–158.

    Google Scholar 

  • Lajoie, C. & Maheux, J.-F. (2013). Richness and complexity of teaching division: prospective elementary teachers’ roleplaying on a division with remainder. In Proceedings of the Eight Congress of European Research in Mathematics Education (CERME 8). Manavgat-Side, Antalya, Turkey.

  • Lakatos, I. (1976). Proofs and refutations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: focusing on teachers’ conceptions. Research in Mathematics Education, 13(1), 17–32.

    Article  Google Scholar 

  • Lev-Zamir, H., & Leikin, R. (2013). Saying versus doing: teachers’ conceptions of creativity in elementary mathematics teaching. ZDM—The International Journal on Mathematics Education, 45(2), 295–308.

  • Liljedahl, P. (2004). Repeating pattern or number pattern: The distinction is blurred. Focus on Learning Problems in Mathematics, 26(3), 24–42.

    Google Scholar 

  • Lindqvist, G. (2003). Vygotsky’s Theory of Creativity. Creativity Research Journal, 15(2–3), 245–251.

    Article  Google Scholar 

  • Maheux, J.-F. & Lajoie, C. (2011). On Improvisation in Teaching and Teacher Education. Complicity: An International Journal of Complexity and Education, 8(2), 86–92.

  • Mason, J., & Watson, A. (2009). The Menousa. For the Learning of Mathematics, 29(2), 33–38.

    Google Scholar 

  • Shiraman, B. (2005). Are giftedness and creativity synonyms in Mathematics? The Journal of Secondary Gifted Education, 17(1), 20–36.

    Google Scholar 

  • Van de Walle, J., Folk, S., Karp, K. S., & Bay-Williams, J. M. (2011). Elementary and middle school mathematics: teaching developmentally. USA: Pearson Education.

    Google Scholar 

  • Watson, A., & Mason, J. (2005). Mathematics as a constructive activity: learners generating examples. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Plato. (380 BCE) Meno. http://classics.mit.edu/Plato/meno.html.

  • Zazkis, R., & Campbell, S. R. (Eds.) (2006). Number theory in mathematics education: Perspectives and prospects. Hillsdale, NJ: Lawrence Erlbaum Press.

    Google Scholar 

  • Zazkis, R., & Holton, D. (2009). Snapshots of creativity in undergraduate mathematics education. In R. Leikin, B. Koichu, & A. Berman (Eds.), Creativity in Mathematics and the Education of Gifted Students (pp. 345–366). Rotterdam, Netherlands: Sense publishers.

    Google Scholar 

  • Zazkis, R., & Liljedahl, P. (2006). On the path to number theory: Repeating patterns as a gateway. In R. Zazkis and S.R. Campbell (Eds.), Number Theory in mathematics education: Perspectives and prospects (pp. 99–114). Lawrence Erlbaum Press.

  • Zazkis, R., Liljedahl, P., & Sinclair, N. (2009a). Lesson Plays: Planning teaching vs. teaching planning. For the Learning of Mathematics, 29(1), 40–47.

    Google Scholar 

  • Zazkis, R., & Nejad, M. J. (2014). What students need: Exploring teachers’ views via imagined role-playing. Teacher Education Quarterly, 41(3), 67–86.

    Google Scholar 

  • Zazkis, R., Sinclair, N., & Liljedahl, P. (2009b). Lesson Play—A vehicle for multiple shifts of attention in teaching. In S. Lerman & B. Davis (Eds.), Mathematical Action & Structures Of Noticing: Studies inspired by John Mason (pp. 165–178). Rotterdam, Netherlands: Sense publishers.

    Google Scholar 

  • Zazkis, R., Sinclair, N., & Liljedahl, P. (2013). Lesson Play in Mathematics Education: A tool for research and professional development. Dordrecht: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rina Zazkis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zazkis, R. Lesson Play tasks as a creative venture for teachers and teacher educators. ZDM Mathematics Education 49, 95–105 (2017). https://doi.org/10.1007/s11858-016-0808-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-016-0808-6

Keywords

Navigation