ZDM

, Volume 48, Issue 5, pp 611–632 | Cite as

Survey team on: conceptualisation of the role of competencies, knowing and knowledge in mathematics education research

  • Mogens Niss
  • Regina Bruder
  • Núria Planas
  • Ross Turner
  • Jhony Alexander Villa-Ochoa
Survey Paper

Abstract

This paper presents the outcomes of the work of the ICME 13 Survey Team on ‘Conceptualisation and the role of competencies, knowing and knowledge in mathematics education research’. It surveys a variety of historical and contemporary views and conceptualisations of what it means to master mathematics, focusing on notions such as mathematical competence and competencies, mathematical proficiency, and mathematical practices, amongst others. The paper provides theoretical analyses of these notions—under the generic heading of mathematical competencies—and gives an overview of selected research on and by means of them. Furthermore, an account of the introduction and implementation of competency notions in the curricula in various countries and regions is given, and pertinent issues are reviewed. The paper is concluded with a set of reflections on current trends and challenges concerning mathematical competencies.

Keywords

Mathematical competence Mathematical competency Mastering mathematics Mathematical proficiency Mathematical literacy Bildungsstandards 

References

  1. Abrantes, P. (2001). Mathematical competencies for all: Options, implications and obstacles. Educational Studies in Mathematics, 47(2), 125–143.CrossRefGoogle Scholar
  2. AECC. (2008). Standards für die mathematischen Fähigkeiten österreichischer Schülerinnen und Schüler amd End der 8. Schulstufe. Klagenfurt: Alpen-Adria Universität Klagenfurt, Institut für Didaktik der Mathematik-AECC.Google Scholar
  3. Alpers, B., Demlova, M., Fant, C.-H., Gustafsson, T., Lawson, D., Mustoe, L., et al. (2013). A framework for mathematics curricula in engineering education. Brussels: SEFI.Google Scholar
  4. Australian Council for Educational Research (2016). Southeast Asian primary learning metrics: Audit of curricula, UNICEF: March 2016. https://www.acer.edu.au/files/SEA-PLMCurriculumAudit2016.pdf. Accessed 30 May 2016.
  5. Australian Education Council (1990). A national statement on mathematics for Australian school. http://files.eric.ed.gov/fulltext/ED428947.pdf. Accessed 30 May 2016.
  6. Australian Education Council/Curriculum Corporation (1994). A national statement on mathematics for Australian school. http://catalogue.nla.gov.au/Record/80076. Accessed 30 May 2016.
  7. Balacheff, N., & Kaput, J. J. (1996). Computer-based learning environments in mathematics. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education, chapter 13 (pp. 469–501). Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  8. Blomhøj, M., & Jensen, T. H. (2003). Developing mathematical modelling competence: Conceptual clarification and educational planning. Teaching Mathematics and Its Applications, 22(3), 123–139.CrossRefGoogle Scholar
  9. Blum, W. (2015). Quality teaching of mathematical modelling: What do we know? What can we do? In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education—intellectual and attitudinal challenges (pp. 73–96). New York: Springer.Google Scholar
  10. Blum, W., Drüke-Noe, C., Hartung, R., & Köller, O. (Eds.). (2006). Bildungsstandards Mathematik: konkret. Berlin: Cornelsen-Scriptor.Google Scholar
  11. Blum, W., Vogel, S., Drüke-Noe, C., & Roppelt, A. (Eds.). (2015). Bildungsstandards Aktuell: Mathematik in der Sekundarstufe II. Braunschweig: Schrödel.Google Scholar
  12. Board of Education. (1938). Report of the consultative committee on secondary education with special reference to grammar schools and technical high schools (“The Spens Report”). London: HM Stationery Office.Google Scholar
  13. Boesen, J., Helenius, O., Bergqvist, E., Bergqvist, T., Lithner, J., Palm, T., & Palmberg, B. (2014). Developing mathematical competence: From the intended to the enacted curriculum. Journal of Mathematical Behavior, 33, 72–87.CrossRefGoogle Scholar
  14. Böhm, U. (2013). Modellieringskompetenzen langfristig und kumulativ fördern—Tätigkeitsteoretische Analyse des mathematischen Modellierens als Lerngegenstand in der Sekundarstufe I. Wiesbaden: Vieweg + Teubner.Google Scholar
  15. Bruder, R., Feldt-Caesar, N., Pallack, A., Pinkernell, G., & Wynands, A. (2015). Mathematisches Grundwissen und Grundkönnen in der Sekundarstufe II. In W. Blum, S. Vogel, C. Drüke-Noe, & A. Roppelt (Eds.), Bildungsstandards Aktuell: Mathematik in der Sekundarstufe II (pp. 108–124). Braunschweig: Schrödel.Google Scholar
  16. Bundeskanzleramt [Austria] (2011). Bildungsstandards im Schulwesen. https://www.ris.bka.gv.at.
  17. Cantoral, R. (2013). Teoría Secioepistemológica de le Matemática Educatica. Estudios sobre construcción social de conocimiento. Barcelona: Gedisa.Google Scholar
  18. Cantoral, R., Reyes-Gasperini, D., & Montiel, G. (2014). Socioepistemologia, Matemáticas y Realidad. Revista Latinoamericana de Etnomatemática, 7(3), 91–116.Google Scholar
  19. Catalonian Department of Education (2013a). http://www.xtec.cat/web/curriculum/competenciesbasiques/ambitmatematic. Accessed 30 May 2016.
  20. Catalonian Department of Education (2013b). http://srvcnpbs.xtec.cat/creamat.joomla. Accessed 30 May 2016.
  21. Common Core State Standards Initiative (2012). Mathematics. http://www.corestandards.org/Math. Accessed 30 Aug 2013.
  22. Cooper, B. (1985). Renegotiating secondary school mathematics: A study of curriculum change and stability. London and Philadelphia: The Falmer Press.Google Scholar
  23. D’Ambrosio, U. (2001). Etnomatemática—elo entre as tradições e a modernidade. Belo Horizonte: Autêntica.Google Scholar
  24. D’Amore, B., Godino, J., & Fandiño, M. I. (2008). Competencias y matemática. Bogotá: Magisterio.Google Scholar
  25. Ellerton, N. F., & Clarkson, P. C. (1996). Language factors in mathematics teaching and learning. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education, chapter 26 (pp. 987–1033). Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  26. García, B., Coronado, A., Montealegra, L., Goraldo, A., Tovar, B., Morales, D., & Cortés, D. (2013). Competencias matématicas y actividad matemática de aprendizaje. Florencia (Colombia): Universidad de la Amazonia.Google Scholar
  27. Hansen, N.S., Iversen, C., & Troels-Smith, K. (1996). Modelkompetencerudvikling og efterprøvning af et begrebsapparat (Modelling competencies—development and testing of a conceptual framework). Tekster fra IMFUFA no. 321. Roskilde: Roskilde University-IMFUFA.Google Scholar
  28. Harmo, S. (2011). Grundkompetenzen für die Mathematik. Freigegen von der EDK-Plenarversammlung: Nationale Bildungsstandards.Google Scholar
  29. Husén, T. (Ed.). (1967). International study of achievement in mathematics (vols. 1 & 2). Stockholm: Almqvist & Wiksell.Google Scholar
  30. Jablonka, E., & Niss, M. (2014). Mathematical literacy. In S. Lerman, B. Sriraman, E. Jablonka, Y. Shimizu, M. Artigue, R. Even, R. Jorgensen, & M. Graven (Eds.), Encyclopedia of mathematics education (pp. 391–396). Dordrecht: Springer (Reference).Google Scholar
  31. Jankvist, U. T., & Misfeldt, M. (2015). CAS-induced learning difficulties in mathematics? For the Learning of Mathematics, 35(1), 29–32.Google Scholar
  32. Jankvist, U. T., & Niss, M. (2015). A framework for designing a research-based “maths counsellor” programme. Educational Studies in Mathematics, 90(3), 259–284.CrossRefGoogle Scholar
  33. Jaworski, B. (2012). Mathematical competence framework: An aid to identifying understanding? In C. Smith (Ed.), Proceedings of the British society for research into learning mathematics, vol. 32, no 3 (pp. 103–109).Google Scholar
  34. Kieran, C. (2007). Learning and teaching algebra at the middle school level through college levels. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning. National council of teachers of mathematics, chapter 16 (pp. 707–762). Charlotte: Information Age Publishing.Google Scholar
  35. Köller, O., & Reiss, K. (2013). Mathematische Kompetenz messen. Gibt es Unterschiede zwischen standard-basierten Verfahren und diagnostiche Tests? In M. Hasselhorn, A. Heinze, W. Schneider, & U. Trautwein (Eds.), Diagnostik mathematischer Kompetenzen (pp. 25–40). Göttingen: Hogrefe.Google Scholar
  36. Kunter, M., Baumert, J., Blum, W., Klusmann, U., Krauss, S., & Neubrand, M. (Eds.). (2013). Cognitive activation in the mathematics classroom and professional competence of teachers—results from the COACTIV project. New York: Springer.Google Scholar
  37. Leuders, T. (2014). Modellierung mathematischer Kompetenzen—Kriterien für eine Validitätsprüfung aus fachdidaktischer Sicht. Journal für Mathematik-Didaktik, 35(1), 7–48.CrossRefGoogle Scholar
  38. Lew, H., Cho, W., Koh, Y., Koh, H. K., & Paek, J. (2012). New challenges in the 2011 revised middle school curriculum of South Korea: Mathematical processes and mathematical attitude. ZDM, 44, 109–119.CrossRefGoogle Scholar
  39. Lithner, J., Bergqvist, E., Bergqvist, T., & Boesen, J. (2010). Mathematical competencies: A research framework. In C. Bergsten, E. Jablonka, & T. Wedege (Eds.), Mathematics and mathematics education. Cultural and social dimensions (pp. 157–167). Linköping: Svensk förening för matematikdidaktisk forskning (SMDF).Google Scholar
  40. Maass, K. (2006). What are modelling competencies? ZDM, 38(2), 113–142.CrossRefGoogle Scholar
  41. Ministry of Education, Science, and Technology (2011). Mathematics curriculum. Seoul: the author.Google Scholar
  42. National Council of Teachers of Mathematics. (1980). An agenda for action: Recommendations for school mathematics of the 1980s. Reston: National Council of Teachers of Mathematics.Google Scholar
  43. National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for school mathematics. Reston: National Council of Teachers of Mathematics.Google Scholar
  44. National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston: National Council of Teachers of Mathematics.Google Scholar
  45. National Research Council. (2001). Adding it up: Helping children learn mathematics. In J. Kilpatrick, J. Swafford, & B. Findell (Eds.), Mathematics learning study committee study. Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: National Academy Press.Google Scholar
  46. Niss, M. (1999). Kompetencer og uddannelsesbeskrivelse [Competencies and subject description]. Uddannelse, 9, 21–29.Google Scholar
  47. Niss, M. (2003). The Danish KOM project and possible consequences for teacher education. In R. Strässer, G. Brandell, B. Grevholm, & O. Helenius (Eds.), Educating for the future. Proceedings of an international symposium on mathematics teacher education (pp. 179–192). Gothenburg: Royla Swedish Academcy of Science. [Republished in Cuadernos de Investigación y Formación en Educación Matemàtica, 2011, 6(9), 13-24.].Google Scholar
  48. Niss, M. (2015a). Mathematical competencies and PISA. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy, Chapter 2 (pp. 35–56). Heidelberg, New York, Dordrecht: Springer.Google Scholar
  49. Niss, M. (2015b). Mathematical literacy. In S. J. Cho (Ed.), The proceedings of the 12th international congress on mathematical education (pp. 409–414). Heidelberg, New York, Dordrecht London: Springer.Google Scholar
  50. Niss, M. (2016). Mathematics standards and curricula under the influence of digital technologies. Different notions, meanings and roles in different parts of the world. In M. Bates & Z. Usiskin (Eds.), Digital curricula in school mathematics (pp. 239–250). Charlotte: Information Age Publishing.Google Scholar
  51. Niss, M., & Højgaard, T. (Eds.) (2011). Competencies and mathematical learning—ideas and inspiration for the development of mathematical teaching and learning in Denmark. English Edition. Tekster fra IMFUFA nr. 485. Roskilde: Roskilde University-IMFUFA [Translation of parts of Niss and Jensen (2002).].Google Scholar
  52. Niss, M., & Jensen, T.H. (Eds.) (2002). Kompetencer og matematiklæringIdeer og inspiration til udvikling af matematikundervisningen i Danmark. Uddannelsesstyrelsens temahæfteserie nr. 18. Copenhagen: The Ministry of Education [In part translated into English in Niss and Højgaard, (2011).].Google Scholar
  53. Organisation of Economic Co-Operation and Development (OECD). (2003). The PISA 2003 assessment framework—mathematics, reading, science and problem solving knowledge and skills. Paris: OECD.Google Scholar
  54. Organisation of Economic Co-Operation and Development (OECD). (2013). The PISA 2012 assessment and analytical framework. mathematics, reading, science, problem solving and financial literacy. Paris: OECD.Google Scholar
  55. Papert, S. (1972). Teaching children to be mathematicians vs. teaching about mathematics. International Journal of Mathematical Education in Science and Technology, 3(3), 249–262.CrossRefGoogle Scholar
  56. Pimm, D. (1987). Speaking mathematically: Communication in mathematics classrooms. London: Routledge and Paul Kegan.Google Scholar
  57. Pimm, D. (1995). Symbols and meanings in school mathematics. London: Routledge.CrossRefGoogle Scholar
  58. Planas, N. (Ed.). (2010). Pensar i comunicar matemàtiques [Thinking and communicating mathematics]. Barcelona: Fundació Pedagògic.Google Scholar
  59. Polya, G. (1945). How to solve it. Princeton: Princeton University Press, Preface.Google Scholar
  60. Prenzel, M., Blum, W., & Klieme, E. (2015). The impact of PISA on mathematics teaching and learning in Germany. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy, chapter 2 (pp. 239–248). Heidelberg, New York, Dordrecht: Springer.Google Scholar
  61. RAND Mathematics Study Panel. (2003). Mathematical proficiency for all students. Toward a strategic research and development program in mathematics education. Santa Monica: RAND.Google Scholar
  62. Rico Romero, L., & Lupiáñez, J. L. (2008). Competencias matemáticas desde una perspectiva curricular. Madrid: Alianza Editorial.Google Scholar
  63. Siller, H.-S., Bruder, R., Hascher, T., Linnemann, T., Steinfeld, J., & Sattlberger, E. (2015). Competency level modelling for school leaving examination. In CERME proceedings TWG 17: Theoretical perspectives and approaches in mathematics education research (pp. 194–204).Google Scholar
  64. Siller, H.-S., Bruder, R., Hascher, T., Linnemann, T., Steinfeld, J., & Schodl, M. (2013). Stufenmodellierung mathematischer Kompetenz am Ende de Sekundarstufe II. In M. Ludwig & M. Kleine (Eds.), Beiträge zum Mathematikundterricht 2013 (pp. 950–953). Münster: WTM.Google Scholar
  65. Stacey, K., & Turner, R. (Eds.). (2015). Assessing mathematical literacy. Heidelberg, New York, Dordrecht: Springer.Google Scholar
  66. Szendrei, J. (1996). Concrete materials in the classroom. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education, chapter 11 (pp. 411–434). Dordrecht, Boston, London: Kluwer Academic Publishers.Google Scholar
  67. Tanner, H., & Jones, S. (1995). Developing metacognitive skills in mathematical modelling—a socio-constructivist interpretation. In C. Sloyer, W. Blum, & I. Huntley (Eds.), Advances and perspectives in the teaching of mathematical modelling and applications (pp. 61–70). Yorklyn: Water Street Mathematics.Google Scholar
  68. Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., et al. (2012). Policy, practice and readiness to teach primary and secondary mathematics in 17 countries: Findings from the IEA Teacher Education and Development Study (TEDS-M). Amsterdam: IEA.Google Scholar
  69. Tobón, S., Pimienta, J., & García, J. (2010). Secuencias didácticas: Aprendizaje y evaluación de competencias. México, DF: Ed. Pearson.Google Scholar
  70. Turner, R., Blum, W., & Niss, M. (2015). Using competencies to explain mathematical item difficulty: A work in progress. In K. Stacey & R. Turner (Eds.), Assessing mathematical literacy, chapter 4 (pp. 85–116). Heidelberg, New York, Dordrecht: Springer.Google Scholar
  71. Turner, R., Dossey, J., Blum, W., & Niss, M. (2013). Using mathematical competencies to predict item difficulty in PISA: A MEG study. In M. Prenzel, M. Kobarg, K. Schöps, & S. Rönnebeck (Eds.), Research outcomes of the pisa research conference 2009 (pp. 23–38). Dordrecht, Heidelberg, New York, London: Springer.Google Scholar
  72. Undervisningsministeriet (1935a). Kgl. Anordning af 9. Marts 1935 angaaende Undervisningen i Gymnasiet (Royal decree concerning the teaching in upper secondary schools).Google Scholar
  73. Undervisningsministeriet (1935b). Bekendtgørelse af 13. Marts 1935 angaaende Undervisningen I Gymnasiet (Departmental order concerning the teaching in upper secondary schools).Google Scholar
  74. Undervisningsministeriet (1935 c). Kgl. Anordning af 2. December 1935 angaaende Fordringerne ved og Kravene til Eksamensopgivelserne til Studentereksamen (Royal decree concerning the subject matter selected for examination and the examination requirements for the higher certificate of secondary education).Google Scholar
  75. Vasco, C. E. (2012). Problemas y retos de la educación por competencias en las matemáticas de 50 grado. In J. Arteta-Vargas (Ed.), Los fraccionarios en primaria: retos, experiencias didácticas y alianzas para aprender matemáticas con sentido (pp. 19–54). Barranquilla (Colombia): Ediitorial Universidad del Norte.Google Scholar
  76. Weinert, F. E. (2001). Vergleichende Leistungsmessung in Schulen—eine umstrittene Selbstverständichkeit. In F. E. Weinert (Ed.), Leistungsmessung in Schulen (pp. 17–31). Weinheim und Basel: Beltz.Google Scholar
  77. Zbiek, R. M., Heid, M. K., Blume, G. W., & Dick, T. P. (2007). Research on technology in mathematics education—a perspective of constructs. In F. K. Lester Jr. (Ed.), Second handbook of research on mathematics teaching and learning. National Council of Teachers of Mathematics, chapter 27 (pp. 1169–1207). Charlotte: Information Age Publishing.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  • Mogens Niss
    • 1
  • Regina Bruder
    • 2
  • Núria Planas
    • 3
  • Ross Turner
    • 4
  • Jhony Alexander Villa-Ochoa
    • 5
  1. 1.Roskilde UniversityRoskildeDenmark
  2. 2.Technische Universität DarmstadtDarmstadtGermany
  3. 3.Universitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Australian Council for Educational ResearchCamberwellAustralia
  5. 5.Universidad de AntioquiaMedellínColombia

Personalised recommendations