, Volume 48, Issue 5, pp 589–610 | Cite as

Blended learning, e-learning and mobile learning in mathematics education

  • Marcelo C. Borba
  • Petek Askar
  • Johann Engelbrecht
  • George Gadanidis
  • Salvador Llinares
  • Mario Sánchez Aguilar
Survey Paper


In this literature survey we focus on identifying recent advances in research on digital technology in the field of mathematics education. To conduct the survey we have used internet search engines with keywords related to mathematics education and digital technology and have reviewed some of the main international journals, including the ones in Portuguese and Spanish. We identify five sub-areas of research, important trends of development, and illustrate them using case studies: mobile technologies, massive open online courses (MOOCs), digital libraries and designing learning objects, collaborative learning using digital technology, and teacher training using blended learning. These examples of case studies may help the reader to understand how recent developments in this area of research have evolved in the last few years. We conclude the report discussing some of the implications that these digital technologies may have for mathematics education research and practice as well as making some recommendations for future research in this area.


Internet Mobile learning MOOC Blended learning Digital libraries Learning objects Collaborative learning 


  1. Aguilar, M. S., & Puga, D. E. (2015). Mobile help seeking in mathematics: an exploratory study with Mexican engineering students. In H. Crompton & J. Traxler (Eds.), Mobile learning and mathematics. Foundations, design, and case studies (pp. 176–186). Florence, KY: Routledge.Google Scholar
  2. Allen, I. E., & Seaman, J. (2010). Learning on demand: online education in the United States, 2009. Newburyport: The Sloan Consortium.Google Scholar
  3. Altun, A., & Aşkar, P. (2008, 17–21 November). An ontological approach to designing learning objects. Paper presented at the E-Learn 2008, Las Vegas, NE, USA.Google Scholar
  4. Atkins, D. E., Brown J. S., & Hammond A.L. (2007). A review of open educational resources (OER) movement: Achievements, challenges, and new opportunities. Resource document. The William and Flora Hewlett Foundation.
  5. Attwell, G. (2007). The personal learning environments—the future of e-learning? eLearning Papers, 2(1). Accessed 7 Mar 2013.
  6. Baki, A., & Çakıroğlu, Ü. (2010). Learning objects in high school mathematics classrooms: implementation and evaluation. Computers & Education, 55(4), 1459–1469. doi: 10.1016/j.compedu.2010.06.009.CrossRefGoogle Scholar
  7. Bicudo, M. A. V. (2014). Meta-análise: seu significado para a pesquisa qualitativa [Meta-synthesis: its meaning in the qualitative research]. Revemat: Revista Eletrônica de Educação Matemática, 9(0), 720. doi: 10.5007/1981-1322.2014v9nespp7.
  8. Boaler, J. (2014). How to learn math: for teachers and parents. Resource document. Stanford University.
  9. Borba, M. C. (2012). Humans-with-media and continuing education for mathematics teachers in online environments. ZDM–The International Journal on Mathematics Education, 44(6), 801–814. doi: 10.1007/s11858-012-0436-8.CrossRefGoogle Scholar
  10. Borba, M. C., & Almeida, H. R. F. L. (2015). As licenciaturas em matemática da Universidade Aberta do Brasil (UAB): uma visão a partir da utilização das tecnologias digitais [Pre-Service Mathematics Teacher Education in “Universidade Aberta do Brasil” (Open University of Brazil): a perspective regarding the use of digital Technologies]. São Paulo: Livraria da FísicaGoogle Scholar
  11. Borba, M. C., Clarkson, P., & Gadanidis, G. (2013). Learning with the use of the Internet. In M. A. Ken Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 691–720). New York: Springer. doi: 10.1007/978-1-4614-4684-2_22.
  12. Borba, M. C., & Gadanidis, G. (2008). Virtual communities and networks of practising mathematics. In K. Krainer & T. Wood (Eds.), The international handbook of mathematics teachers education. Participants in mathematics teacher education. Individual, teams, communities and networks (Vol. 3, pp. 181–206). Rotterdam/Taipei: Sense Publishers.Google Scholar
  13. Borba, M. C., & Lacerda, H. D. G. (2015). Políticas públicas e tecnologias digitais: um celular por aluno [Public Policies and Digital Technologies: a smartphone per student]. Educação Matemática Pesquisa, 17(3), 490–507.Google Scholar
  14. Borba, M. C., & Llinares, S. (2012). Online mathematics teacher education: overview of an emergent field of research. ZDM–The International Journal on Mathematics Education, 44(6), 697–704. doi: 10.1007/s11858-012-0457-3.CrossRefGoogle Scholar
  15. Borba, M. C., Malheiros, A. P. S., & Zulatto, R. B. A. (2010). Online distance education (1st ed.). Rotterdam: Sense Publishers.Google Scholar
  16. Borba, M. C., Scucuglia, R. R. S., & Gadanidis, G. (2014). Fases das tecnologias digitais em educação matemática: sala de aula e internet em movimento [Phases of digital technologies in mathematics education: the classroom and the Internet in motion] (1st ed.). Belo Horizonte: Autêntica.Google Scholar
  17. Borba, M. C., & Villarreal, M. E. (2005). Humans-with-Media and the reorganization of mathematical thinking. New York: Springer.Google Scholar
  18. Buchem, I., Attwell, G., & Torres, R. (2011). Understanding personal learning environments: Literature review and synthesis through the activity theory lens. Paper presented at the The PLE Conference 2011, Southampton, UK.Google Scholar
  19. Candela, L. et al. (2007). The DELOS digital library reference model: foundation for digital libraries, version 0.96. Resource document. European Commission within the Sixth Framework Programme.
  20. Cechinel, C., Sánchez-Alonso, S., & García-Barriocanal, E. (2011). Statistical profiles of highly-rated learning objects. Computers & Education, 57(1), 1255–1269. doi: 10.1016/j.compedu.2011.01.012.CrossRefGoogle Scholar
  21. Chatti, A. C., Agustiawan, M. R., Jarke, M., & Specht, M. (2010a). Toward a personal learning environment framework. International Journal of Virtual and Personal Learning Environments, 1(4), 66–85. doi: 10.4018/jvple.2010100105.CrossRefGoogle Scholar
  22. Chatti, A. C., Agustiawan, M. R., Jarke, M., & Specht, M. (2010b). The 3P learning model. Educational Technology & Society, 13(4), 74–85.Google Scholar
  23. Chen, P. D., Lambert, A. D., & Guidry, K. R. (2010). Engaging online learners: the impact of Web-based learning technology on college student engagement. Computers & Education, 54(4), 1222–1232. doi: 10.1016/j.compedu.2009.11.008.CrossRefGoogle Scholar
  24. Clay, E., Silverman, J., & Fischer, D. J. (2012). Unpacking online asynchronous collaboration in mathematics teacher education. ZDM–The International Journal on Mathematics Education, 44(6), 761–773. doi: 10.1007/s11858-012-0428-8.CrossRefGoogle Scholar
  25. Clements, M. A. K., Bishop A. J., Keitel, C., Kilpatrick, J., & Leung, F. K. S. (Eds.). (2013). Third international handbook of mathematics education. New York: Springer. doi: 10.1007/978-1-4614-4684-2.
  26. Clements, K., Pawlowski, J., & Manouselis, N. (2015). Open educational resources repositories literature review—towards a comprehensive quality approaches framework. Computers in Human Behavior, 51(Part B), 1098–1106. doi: 10.1016/j.chb.2015.03.026.CrossRefGoogle Scholar
  27. Coates, H., James, R., & Baldwin, G. (2005). A critical examination of the effects of learning management systems on university teaching and learning. Tertiary Education and Management, 11(1), 19–36. doi: 10.1007/s11233-004-3567-9.CrossRefGoogle Scholar
  28. Committee on Electronic Information and Communication (2014). Mathematical massive open online courses (M-MOOCs): ICM 2014 panel brief. Resource document. International Mathematical Union.
  29. Conde, M. A., García, F. J., Alier, M., & Casany, M. J. (2011). Merging learning management systems and personal learning environments. Proceedings of the Personal Learning Environment Conference 2011, July 2011, Southampton, UK. Accessed 2 Oct 2014.
  30. Crompton, H. (2013). A historical overview of mobile learning: toward learner-centered education. In Z. L. Berge & L. Y. Muilenburg (Eds.), Handbook of mobile learning (pp. 3–14). Florence: Routledge.Google Scholar
  31. Crompton, H. (2015). Understanding angle and angle measure: a design-based research study using context aware ubiquitous learning. International Journal for Technology in Mathematics Education, 22(1), 19–30. doi: 10.1564/tme_v22.1.02.Google Scholar
  32. Crompton, H., & Traxler, J. (Eds.). (2015). Mobile learning and mathematics. Foundations, design and case studies. Florence: Routledge.Google Scholar
  33. D’Ambrosio, U., & Borba, M. C. (2010). Dynamics of change of mathematics education in Brazil and a scenario of current research. ZDM–The International Journal on Mathematics Education, 42(3), 271–279. doi: 10.1007/s11858-010-0261-x.CrossRefGoogle Scholar
  34. Daher, W. (2011). Learning mathematics in the mobile phone environment: students’ emotions. Journal of Interactive Learning Research, 22(3), 357–378.Google Scholar
  35. Daher, W., & Baya’a, N. (2012). Characteristics of middle school students learning actions in outdoor mathematical activities with the cellular phone. Teaching Mathematics and Its Applications, 31(3), 133–152. doi: 10.1093/teamat/hrr018.CrossRefGoogle Scholar
  36. Drexler, W. (2010). The networked student model for construction of personal learning environments: balancing teacher control and student autonomy. Australasian Journal of Educational Technology, 26(3), 369–385. doi: 10.14742/ajet.v26i3.1081.CrossRefGoogle Scholar
  37. Du, C. (2011). A comparison of traditional and blended learning in introductory principles of accounting course. American Journal of Business Education, 4(9), 1–10. doi: 10.19030/ajbe.v4i9.5614.Google Scholar
  38. Engelbrecht, J., & Harding, A. (2005a). Teaching undergraduate mathematics on the Internet. Part 1: technologies and taxonomy. Educational Studies in Mathematics, 58(2), 235–252. doi: 10.1007/s10649-005-6456-3.CrossRefGoogle Scholar
  39. Engelbrecht, J., & Harding, A. (2005b). Teaching undergraduate mathematics on the Internet. Part 2: attributes and possibilities. Educational Studies in Mathematics, 58(2), 253–276. doi: 10.1007/s10649-005-6457-2.CrossRefGoogle Scholar
  40. Fernandez, C., Llinares, S., & Valls, J. (2012). Learning to notice students’ mathematical thinking through on-line discussions. ZDM–The International Journal on Mathematics Education, 44(6), 747–759. doi: 10.1007/s11858-012-0425-y.CrossRefGoogle Scholar
  41. Ford, P. (2015). Flipping a math content course for pre-service elementary school teachers. Primus, 25(4), 369–380. doi: 10.1080/10511970.2014.981902.CrossRefGoogle Scholar
  42. Franklin, T., & Peng, L.-W. (2008). Mobile math: math educators and students engage in mobile learning. Journal of Computing in Higher Education, 20(2), 69–80. doi: 10.1007/s12528-008-9005-0.CrossRefGoogle Scholar
  43. Fulton, K. (2012). 10 reasons to flip. Phi Delta Kappan, 94(2), 20–24. doi: 10.1177/003172171209400205.CrossRefGoogle Scholar
  44. Gadanidis, G. (2012). Why can’t I be a mathematician? For the Learning of Mathematics, 32(2), 20–26.Google Scholar
  45. Gadanidis, G. (2013). Designing a Mathematics-for-All MOOC. In T. Bastiaens, & G. Marks (Eds.), Proceedings of e-learn: World conference on e-learning in corporate, government, healthcare and higher education, 2013 (pp. 704–710). Chesapeake, VA: Association for the Advancement of Computing in Education (AACE). Accessed 28 July 2015.
  46. Gadanidis, G., & Borba, M. (2008). Our lives as performance mathematicians. For the Learning of Mathematics, 28(1), 44–51.Google Scholar
  47. Gadanidis, G., & Namukasa, I. (2007). Mathematics-for-teachers (and students). Journal of Teaching and Learning, 5(1), 13–22.Google Scholar
  48. Gadanidis, G., Sedig, K., & Liang, H. N. (2004). Designing online mathematical investigation. Journal of Computers in Mathematics and Science Teaching, 23(3), 275–298.Google Scholar
  49. García-Peñalvo, F. J., Conde, M. Á., Alier, M., & Casany, M. J. (2011). Opening learning management systems to personal learning environments. Journal of Universal Computer Science, 17(9), 1222–1240. doi: 10.3217/jucs-017-09-1222.Google Scholar
  50. Goos, M., & Geiger, V. (2012). Connecting social perspectives on mathematics teacher education in online environments. ZDM–The International Journal on Mathematics Education, 44(6), 705–715. doi: 10.1007/s11858-012-0441-y.CrossRefGoogle Scholar
  51. Harding, A., & Engelbrecht, J. (2015). Personal learning network clusters: a comparison between mathematics and computer science students. Journal of Educational Technology & Society, 18(3), 173–184.Google Scholar
  52. Holubz, B.J. (2015). Mobilizing mathematics. Participants’ perspectives on Bring Your Own Device. In H. Crompton, & J. Traxler (Eds.), Mobile learning and mathematics. Foundations, design, and case studies (pp. 213–222). Florence, KY: Routledge.Google Scholar
  53. IEEE Learning Technology Standards Committee (2002). Draft standard for learning object metadata. Resource document. IEEE. Accessed 29 Jan 2016.
  54. Ivanova, M. (2009). From personal learning environment building to professional learning network forming. Proceedings of the 5th international conference eLearning and software for education (eLSE), issue: 01/2009, (27–32). Accessed 29 Jan 2016.
  55. Johnson, M., & Liber, O. (2008). The personal learning environment and the human condition: from theory to teaching practice. Interactive Learning Environments, 16(1), 3–15. doi: 10.1080/10494820701772652.CrossRefGoogle Scholar
  56. Keller, J. H., Hassell, J. M., Webber, S. A., & Johnson, J. N. (2009). A comparison of academic performance in traditional and hybrid learning in a graduate accounting course: student satisfaction and course design issues. Journal of Accounting Education, 27(3), 147–154. doi: 10.1016/j.jaccedu.2010.03.001.CrossRefGoogle Scholar
  57. Kilde, J., & Gonzales, L. (2015). A connective MOOC for k-12 science and mathematics teacher professional development in native American Pueblo schools. ICTD’15: Proceedings of the seventh international conference on information and communication technologies and development. doi: 10.1145/2737856.2737871.
  58. Kinshuk, D., Jesse, R. (2013). Mobile authoring of open educational resources as reusable learning objects. The International Review of Research in Open and Distributed Learning, 14(2), 28–52.Google Scholar
  59. LaFee, S. (2013). Flipped learning. The Education Digest, November Issue, 13–18.Google Scholar
  60. Lalonde, C. (2012). How important is Twitter in your personal learning network? eLearn Magazine. September 2012. Accessed 1 Aug 2015.
  61. Larkin, K., & Calder, N. (2015). Mathematics education and mobile technologies. Mathematics Education Research Journal,. doi: 10.1007/s13394-015-0167-6.Google Scholar
  62. Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  63. Levy, P. (1993). Tecnologias da Inteligência: O futuro do pensamento na era da informática. [Technologies of Intelligence: the future of thinking in the informatics era]. Rio de Janeiro, Brazil: Editora 34.Google Scholar
  64. Llinares, S., Krainer, K., & Brown, L. (2014). Mathematics teachers and curricula. In S. Lerman (Ed.), Encyclopedia of mathematics education (pp. 438–441). New York: Springer. doi: 10.1007/978-94-007-4978-8_111.
  65. Llinares, S., & Olivero, F. (2008). Virtual communities and networks of prospective mathematics teachers: technologies, interactions and new forms of discourse. In K. Krainer, & T. Wood (Eds.), The international handbook of mathematics teachers education. Volume 3. Participants in mathematics teacher education. individual, teams, communities and networks (pp. 155–179). Rotterdam/Taipei: Sense Publishers.Google Scholar
  66. Martindale, T., & Dowdy, M. (2010). Personal learning environments. In G. Veletsianos (Ed.), Emerging technologies in distance education (177–193). Edmonton, Canada: AU Press, Athabasca University. Accessed 29 Jan 2016.
  67. McCulloch, R., & Rothschild, L. P. (2014). MOOCs: an inside view. Notices of the AMS, 61(8), 2–8. doi: 10.1090/noti1147.Google Scholar
  68. McLuhan, M. (1964). Understanding media: the extensions of man. New York: McGraw Hill.Google Scholar
  69. Meletiou-Mavrotheris, M., Mavrou, K., & Paparistodemou, E. (Eds.). (2015). Integrating touch-enabled and mobile devices into contemporary mathematics education. Hershey: IGI Global.Google Scholar
  70. Milligan, C., Johnson, M., Sharples, P., Wilson, S., & Liber, O. (2006). Developing a reference model to describe the personal learning environment. In W. Nejdl & K. Tochtermann (Eds.), Innovative approaches for learning and knowledge sharing—First european conference on technology enhanced learning, ECTEL 2006 (pp. 506–511). Berlin/Heidelberg: Springer.Google Scholar
  71. Mirriahi, N., Alonzo, D., McIntyre, S., Kligyte, G., & Fox, B. (2015). Blended learning innovations: leadership and change in one Australian institution. International Journal of Education and Development using Information and Communication Technology, 11(1), 4–16.Google Scholar
  72. Olivier, B., & Liber, O. (2001). Lifelong learning: The need for portable personal learning environments and supporting interoperability standards. Accessed 3 Mar 2008.
  73. Owen, H., & Dunham, N. (2015). Reflections on the use of iterative, agile and collaborative approaches for blended flipped learning development. Education Sciences, 5(2), 85–105. doi: 10.3390/educsci5020085.CrossRefGoogle Scholar
  74. Palmer, P. (2014). Using iPad video evidence as a tool for reflection in primary teacher education. Research in Mathematics Education, 16(2), 206–207. doi: 10.1080/14794802.2014.918341.CrossRefGoogle Scholar
  75. Paulsen, M. F. (2003). Online education and learning management systems: Global e-learning in a Scandinavian perspective. NKI Gorlaget: Oslo.Google Scholar
  76. Polsani, P. R. (2003). Use and abuse of reusable learning objects. Journal of Digital Information, 3(4).
  77. Roberts, N., & Vänskä, R. (2011). Challenging assumptions: mobile learning for mathematics project in South Africa. Distance Education, 32(2), 243–259. doi: 10.1080/01587919.2011.584850.CrossRefGoogle Scholar
  78. Roger, T., & Johnson, D. W. (1988). Cooperative learning. Two heads learn better than one. IN CONTEXT, 18. Accessed 13 Oct 2014.
  79. Romberg (Chair), T. A. (1989). Curriculum and valuation standards for school mathematics. Reston: National Council of Teachers of Mathematics.Google Scholar
  80. Ruiz, A. (2013). La reforma de la educación matemática en Costa Rica. Perspectiva de la praxis [The mathematics education reform in Costa Rica. Perspective of praxis]. Cuadernos de Investigación y Formación en Educación Matemática, Year 8, Special Number.
  81. Sarasty, M. F. S., & Fernández, M. F. B. (2015). Elgg social network software readjustment to mathematics education: a study case. Proceedings of 2015 10th Iberian conference on information systems and technologies (CISTI), 1–6. doi: 10.1109/CISTI.2015.7170434.
  82. Schrage, M. (2001). The relationship revolution., Accessed 12 July 2008.
  83. Sclater, N. (2008). Web 2.0, personal learning environments, and the future of learning management systems. Educause Center for Applied Research, Research Bulletin 13. Accessed 26 July 2016.
  84. Skovsmose, O., & Borba, M. C. (2004). Research methodology and critical mathematics education. In P. Valero, & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology (pp. 207–226). Dordrecht: Kluwer. doi: 10.1007/1-4020-7914-1_17.
  85. Smith, J., & Smith, R. (2012). Screen-capture instructional technology: a cognitive tool for designing a blended multimedia curriculum. Journal of Educational Computing Research, 46(3), 207–228. doi: 10.2190/EC.46.3.a.CrossRefGoogle Scholar
  86. Smith, J. G., & Suzuki, S. (2015). Embedded blended learning within an Algebra classroom: a multimedia capture experiment. Journal of Computer Assisted learning, 31(2), 133–147. doi: 10.1111/jcal.12083.CrossRefGoogle Scholar
  87. NGSS Lead States (2013). Next generation science standards: for states, by states.
  88. Swan, K., & Shea, P. (2005). The development of virtual learning communities. In S. R. Hiltz & R. Goldman (Eds.), Asynchronous learning networks: The research frontier (pp. 239–260). New York: Hampton Press.Google Scholar
  89. Tabbers, H., & Koeijer, B. (2010). Learner control in animated multimedia instructions. Instructional Science, 38(5), 441–453. doi: 10.1007/s11251-009-9119-4.CrossRefGoogle Scholar
  90. The Open University (2015). New MOOCenhancing teacher education through OER: adapting and utilising OER from TESS-India. Resource document. The Open University.
  91. Tobin, D. R. (2000). All learning is self-directed: How organisations can support and encourage independent learning. Alexandria: ASTD Press.Google Scholar
  92. Toerner, G., & Arzarello, F. (2012). Grading mathematics education research journals. EMS Newsletter, 86, 52–54.Google Scholar
  93. Trouche, L., Drijvers, P., Gueudet, G., & Sacristán, A. I. (2013). Technology-driven developments and policy implications for mathematics education. In M. A. (Ken) Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 753–789). New York: Springer. doi: 10.1007/978-1-4614-4684-2_24.
  94. Tu, C.-H., Sujo-Montes, L., Yen, C.-J., Chan, J.-Y., & Blocher, M. (2012). The integration of personal learning environments & open network learning environments. TechTrends, 56(3), 13–19. doi: 10.1007/s11528-012-0571-7.CrossRefGoogle Scholar
  95. van de Sande, C. (2011). A description and characterization of student activity in an open, online, mathematics help forum. Educational Studies in Mathematics, 77(1), 53–78. doi: 10.1007/s10649-011-9300-y.CrossRefGoogle Scholar
  96. Villarreal, M. E., & Borba, M. C. (2010). Collectives of humans-with-media in mathematics education: notebooks, blackboards, calculators, computers and… notebooks throughout 100 years of ICMI. ZDMThe International Journal on Mathematics Education, 42(1), 49–62. doi: 10.1007/s11858-009-0207-3.
  97. Wagner, J. A. (1995). Studies of individualism-collectivism: effects on cooperation in groups. Academy of Management Journal, 38(1), 152–172. doi: 10.2307/256731.CrossRefGoogle Scholar
  98. White, T., & Martin, L. (2014). Mathematics and mobile learning. TechTrends, 58(1), 64–70. doi: 10.1007/s11528-013-0722-5.CrossRefGoogle Scholar
  99. Wijers, M., Jonker, V., & Drijvers, P. (2010). MobileMath: exploring mathematics outside the classroom. ZDM–The International Journal on Mathematics Education, 42(7), 789–799. doi: 10.1007/s11858-010-0276-3.CrossRefGoogle Scholar
  100. Wild, F., Kalz, M., & Palmér, M. (Eds.). (2010). Proceedings of the 3rd Workshop on Mashup Personal Learning Environments. Barcelona, Spain. Accessed 14 Feb 2014.
  101. Wild, F., Moedritscher, F., & Sigurdarson, S. E. (2008). Designing for change: MASH-up personal learning environments. eLearning Papers 9.Google Scholar
  102. Wilson, S. (2008). Patterns of personal learning environments. Interactive Learning Environments, 16(1), 17–34. doi: 10.1080/10494820701772660.CrossRefGoogle Scholar
  103. Wilson, S. G. (2013). The flipped class. A method to address the challenges of an undergraduate statistics course. Teaching of Psychology, 40(3), 193–199. doi: 10.1177/0098628313487461.CrossRefGoogle Scholar
  104. Yerushalmy, M., & Botzer, G. (2011). Guiding mathematical inquiry in mobile settings. In O. Zaslavsky, & P. Sullivan (Eds.), Constructing knowledge for teaching secondary mathematics (pp. 191–207). New York: Springer. doi: 10.1007/978-0-387-09812-8_12.

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Graduate Program in Mathematics EducationUNESPRio ClaroBrazil
  2. 2.Emeritus, Department of Computer Education and Instructional TechnologyHacettepe UniversityAnkaraTurkey
  3. 3.Department of Science, Mathematics and Technology EducationUniversity of PretoriaPretoriaSouth Africa
  4. 4.Faculty of EducationWestern UniversityLondonCanada
  5. 5.Departamento de Innovación y Formación Didáctica, Facultad de EducaciónUniversidad de AlicanteAlicanteSpain
  6. 6.Programa de Matemática EducativaCICATA Legaria, Instituto Politécnico NacionalMexico CityMexico

Personalised recommendations