, Volume 48, Issue 6, pp 875–894 | Cite as

The semiotic and conceptual genesis of angle

  • Denis TanguayEmail author
  • Fabienne Venant
Original Article


In the present study, we try to understand how students at the end of primary school conceive of angle: Is an angle a magnitude for them or a geometric figure, and how do they manage to coordinate the two aspects in their understanding of the concepts of angle and of angle measurement? With the aim of better grasping the way angle is conceptualized, we submitted to a 6th grade class (11–12 years old) a questionnaire about angles. The analysis of the answers allows tracking a muddled meaning allotted to angle and shared by these students, in which measure prevails widely and where the measured figure is fuzzy, leaning on strongly iconic representations, of a blurred theoretical status. The analysis of two textbook collections used as guidelines by primary level teachers in the school under consideration suggests that the outlined conceptualizations are elicited by the way instruments and semiotic representations are being used in the teaching situations proposed in the textbooks. The study enabled us to build a better and deeper understanding, in that context, of two dialectical genetic processes that we name and describe as ‘disentanglement’ and amalgamation, and which help to bring to light the interactions between the different meanings in construction.


Angle Measure Mathematical working space Semiotic genesis Semiotic bundle Sense vs meaning Amalgamation vs disentanglement 


  1. Arzarello, F. (2006). Semiosis as a multimodal process. Revista latinoamericana de investigación en matemática educativa (RELIME), 9(1), 267–299.Google Scholar
  2. Berthelot, R., & Salin, M.-H. (1995). Un enseignement des angles au cycle 3. Grand N, 56, 69–116.Google Scholar
  3. Berthelot, R., & Salin, M.-H. (2001). L’enseignement de la géométrie au début du collège. Comment concevoir le passage de la géométrie du constat à la géométrie déductive. Petit x, 56, 5–34.Google Scholar
  4. Devichi, C., & Munier, V. (2013). About the concept of angle in elementary school: misconceptions and teaching sequences. Journal of Mathematical Behavior, 32, 1–19.CrossRefGoogle Scholar
  5. Duval, R. (1995). Sémiosis et pensée humaine. Bern, Switzerland: Éditions Peter Lang.Google Scholar
  6. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de didactique et de sciences cognitives, 10, 5–53.Google Scholar
  7. Fischbein, E. (1993). The theory of figural concept. Educational Studies in Mathematics, 24, 139–162.CrossRefGoogle Scholar
  8. Guay, S., Hamel, J.-C., Lemay, S., & Charest, D. (2002). Clicmaths. Mathematics textbooks collection, primary level. Laval, Quebec: Éditions Grand Duc.Google Scholar
  9. Hilbert, D. (1947). The Foundations of Geometry. Trans. by E. J. Townsend from the original 1902 edition. La Salle, Illinois: The Open Court Publishing cie.Google Scholar
  10. Kuzniak, A. (2011). L’Espace de Travail Mathématique et ses genèses. Annales de Didactique et de Sciences Cognitives, 16, 9–24.Google Scholar
  11. Laborde, C., & Capponi, B. (1994). Cabri-Géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. Recherches en didactique des mathématiques, 14(12), 165–210.Google Scholar
  12. Lacasse, C. (2001). Adagio. Mathematics textbooks, Allegro-Adagio-Presto collection, primary level, 2nd cycle. Ville d’Anjou, Quebec: les éditions CEC.Google Scholar
  13. Lacasse, C. (2003). Presto. Mathematics textbooks, Allegro-Adagio-Presto collection, primary level, 3rd cycle. Ville d’Anjou, Quebec: les éditions CEC.Google Scholar
  14. Lehrer, R., Jenkins, M., & Osana, H. (1998). Longitudinal study of children’s reasoning about space and geometry. In R. Lehrer & D. Chazan (Eds.), Designing learning environments for developing understanding of geometry and space (pp. 137–167). Mahwah, New Jersey: Erlbaum.Google Scholar
  15. Mitchelmore, M., & White, P. (1998). Development of angle concepts: A framework for research. Mathematics Education Research Journal, 10(3), 4–27.CrossRefGoogle Scholar
  16. Patton, M. Q. (1990). Qualitative evaluation and research methods. Newbury Park, California: Sage Publications.Google Scholar
  17. Rabardel, P. (1995). Les hommes et les technologies. Paris: Armand Colin.Google Scholar
  18. Radford, L. (2014). Towards an embodied, cultural, and material conception of mathematics cognition. ZDM – The International Journal on Mathematics Education, 46(3), 349–361.CrossRefGoogle Scholar
  19. Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26, 114–145.CrossRefGoogle Scholar
  20. Tanguay, D. (2002). Analyse des problèmes de géométrie et apprentissage de la preuve au secondaire. Revue canadienne de l’enseignement des sciences, des mathématiques et de la technologie, 2(3), 371–396.Google Scholar
  21. Tanguay, D. (2012). La notion d’angle au début du secondaire. Envol. First part in 158, 33–37; Second part in 159, 31–35.Google Scholar
  22. Tanguay, D. (2015). Circulation et coordination dans les espaces de travail, pour une activité articulant géométrie et arithmétique. In I. Gómez-Chacón, J. Escribano, A. Kuzniak, & P. R. Richard (Eds.), Proceedings of the 4th symposium Espaces de Travail Mathématique (pp. 69–85). Spain: Universidad Complutense de Madrid.Google Scholar
  23. Tanguay, D., Geeraerts, L., Saboya, M., Venant, F., Guerrero, L. & Morales, C. (2013). An activity entailing exactness and approximation of angle Measurement in a DGS. In B. Ubuz, Ç. Haser and M. A. Mariotti (Eds.) Proceedings of the Eight Congress of European Research in Mathematics Education (CERME 8) (pp. 695–704). Manavgat-Side/Antalya, Turkey.Google Scholar
  24. Vergnaud, G. (1990). La théorie des champs conceptuels. Recherches en didactique des mathématiques, 10(2.3), 133–170.Google Scholar
  25. Vygotsky, L. (1997). Pensée et langage. Translation from F. Sève of the 1934 Russian edition. Paris: La Dispute.Google Scholar
  26. Webb, N. M. (1991). Task-related verbal interaction and mathematics learning in small groups. Journal for Research in Mathematics Learning, 22, 366–389.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Département de mathématiquesUQAMMontréalCanada

Personalised recommendations