, Volume 48, Issue 3, pp 249–253 | Cite as

Potential applications of cognitive neuroscience to mathematics education

  • Bert De Smedt
  • Roland H. Grabner
Survey Paper


In this editorial, we revisit the ZDM special issue on Cognitive Neuroscience and Mathematics Learning that was published about 5 years ago by providing a snapshot of how research at the intersection of cognitive neuroscience and mathematics education is flourishing at this point in time. This is illustrated by nine empirical papers and two commentaries, the authors of which also commented on the special issue 5 years ago. In this editorial, we briefly discuss applications from neuroscience to education (in the field of mathematics learning) from a methodological and more theoretical point of view and we provide a very brief overview of the contributions in this special issue by linking them to such applications from neuroscience to education.


Mathematics Education Cognitive Neuroscience Number Symbol Arithmetical Skill Neuroscientific Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ansari, D., & Lyons, I. (2016). Cognitive neuroscience and mathematics learning: How far have we come? Where do we need to go? ZDM Mathematics Learning. doi: 10.1007/s11858-016-0782-z.
  2. Babai, R., Nattiv, L., & Stavy, R. (2016). Comparison of perimeters: improving students’ performance by increasing the salience of the relevant variable. ZDM Mathematics Education. doi: 10.1007/s11858-016-0766-z.
  3. Bowers, J. S. (2016). The practical and principled problems with educational neuroscience. Psychological Review. doi: 10.1037/rev0000025.
  4. Butterworth, B., Varma, S., & Laurillard, D. (2011). Dyscalculia: from brain to education. Science, 332(6033), 1049–1053. doi: 10.1126/science.1201536.CrossRefGoogle Scholar
  5. Cacioppo, J. T., Berntson, G. G., & Nusbaum, H. C. (2008). Neuroimaging as a new tool in the toolbox of psychological science. Current Directions in Psychological Science, 17(2), 62–67. doi: 10.1111/j.1467-8721.2008.00550.x.CrossRefGoogle Scholar
  6. De Smedt, B. (2014). Advances in the use of neuroscience methods in research on learning and instruction. Frontline Learning Research, 6, 7–14. doi: 10.14786/flr.v2i4.115.Google Scholar
  7. De Smedt, B., Ansari, D., Grabner, R. H., Hannula-Sormunen, M., Schneider, M., & Verschaffel, L. (2011). Cognitive neuroscience meets mathematics education: it takes two to Tango. Educational Research Review, 6(3), 232–237. doi: 10.1016/j.edurev.2011.10.003.CrossRefGoogle Scholar
  8. De Smedt, B., & Grabner, R. (2015). Applications of neuroscience to mathematics education. In A. Dowker & R. Cohen-Kadosh (Eds.), Oxford handbook of mathematical cognition (pp. 613–636). Oxford, United Kingdom: Oxford University Press.Google Scholar
  9. De Smedt, B., Noel, M. P., Gilmore, C., & Ansari, D. (2013). The relationship between symbolic and non-symbolic numerical magnitude processing and the typical and atypical development of mathematics: a review of evidence from brain and behavior. Trends in Neuroscience and Education, 2, 48–55. doi: 10.1016/j.tine.2013.06.001.CrossRefGoogle Scholar
  10. Dick, F., Lloyd-Fox, S., Blasi, A., Elwell, C., & Mills, D. (2014). Neuroimaging methods. In D. Mareschal, B. Butterworth, & A. Tolmie (Eds.), Educational neuroscience (pp. 13–45). Malden, MA: Wiley-Blackwell.Google Scholar
  11. Kirk, E. P., & Ashcraft, M. H. (2001). Telling stories: the perils and promise of using verbal reports to study math strategies. Journal of Experimental Psychology-Learning Memory and Cognition, 27(1), 157–175. doi: 10.1037//0278-7393.27.1.157.CrossRefGoogle Scholar
  12. Krause, B., & Kadosh, R. C. (2013). Can transcranial electrical stimulation improve learning difficulties in atypical brain development? A future possibility for cognitive training. Developmental Cognitive Neuroscience, 6, 176–194. doi: 10.1016/j.dcn.2013.04.001.CrossRefGoogle Scholar
  13. Leikin, R., Waisman, I., & Leikin, M. (2016). Does solving insight-based problems differ from solving learning-based problems? Some evidence from an ERP study. ZDM Mathematics Education. doi: 10.1007/s11858-016-0767-y.
  14. Merkley, R., Shimi, A., & Scerif, G. (2016). Electrophysiological markers of newly acquired symbolic numerical representations: the role of magnitude and ordinal information. ZDM Mathematics Education. doi: 10.1007/s11858-015-0751-y.
  15. Obersteiner, A., & Tumpek, C. (2016). Measuring fraction comparison strategies with eye-tracking. ZDM Mathematics Education. doi: 10.1007/s11858-015-0742-z.
  16. Pollack, C., Leon, S. L., & Star, J. R. (2016). Exploring mental representations for literal symbols using priming and comparison distance effects. ZDM Mathematics Education. doi: 10.1007/s11858-015-0745-9.
  17. Schillinger, F., De Smedt, B., & Grabner, R. H. (2016). When errors count: an EEG study on numerical error monitoring under performance pressure. ZDM Mathematics Education. doi: 10.1007/s11858-015-0746-8.
  18. Schneider, M., Beeres, K., Coban, L., Merz, S., Schmidt, S., Stricker, J., & De Smedt, B. (2016). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science. doi: 10.1111/desc.12372.
  19. Spüler, M., Walter, C., Rosentiel, W., Moeller, K., & Klein, E. (2016). EEG-based prediction of cognitive workload induced by arithmetic: a step towards online adaptation in numerical learning. ZDM Mathematics Education. doi: 10.1007/s11858-015-0754-8.
  20. Stern, E., & Schneider, M. (2010). A digital road map analogy of the relationship between neuroscience and educational research. ZDM - The International Journal on Mathematics Education, 42, 511–514. doi: 10.1007/s11858-010-0278-1.CrossRefGoogle Scholar
  21. Supekar, K., Swigart, A. G., Tenison, C., Jolles, D. D., Rosenberg-Lee, M., Fuchs, L., & Menon, V. (2013). Neural predictors of individual differences in response to math tutoring in primary-grade school children. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8230–8235. doi: 10.1073/pnas.1222154110.CrossRefGoogle Scholar
  22. Verschaffel, L., Lehtinen, E., & Van Dooren, W. (2016). Neuroscientific studies of mathematical thinking and learning: A critical look from a mathematics education viewpoint. ZDM Mathematics Education. doi: 10.1007/s11858-016-0781-0.
  23. Vogel, S., Keller, C., Koschutnig, G., Ebner, F., Dohle, S., Siegrist, M., & Grabner, R. H. (2016). The neural correlates of health risk perception in individuals with low and high numeracy. ZDM Mathematics Education. doi: 10.1007/s11858-016-0761-4.
  24. Waisman, I., Leikin, M., & Leikin, R. (2016). Brain activity associated with logical inferences in geometry: focusing on students with different levels of ability. ZDM Mathematics Education. doi: 10.1007/s11858-016-0760-5.

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Parenting and Special Education Research Unit, KU Leuven, Faculty of Psychology and Educational SciencesUniversity of LeuvenLeuvenBelgium
  2. 2.Educational Neuroscience, Institute of PsychologyUniversity of GrazGrazAustria

Personalised recommendations