ZDM

, Volume 48, Issue 6, pp 793–807 | Cite as

Connected functional working spaces: a framework for the teaching and learning of functions at upper secondary level

Original Article

Abstract

This paper aims at contributing to remedy the narrow treatment of functions at upper secondary level. Assuming that students make sense of functions by working on functional situations in distinctive settings, we propose to consider functional working spaces inspired by geometrical working spaces. We analyse a classroom situation based on a geometric optimization problem pointing out that no working space has been prepared by the teacher for students’ tasks outside algebra. We specify a dynamic geometry space, a measure space and an algebra space, with artefacts in each space and means for connecting these provided by Casyopée. The question at stake is then the functionality of this framework for implementing and analyzing classroom situations and for analyzing students’ and teachers’ evolution concerning functions, in terms of geneses relative to each space.

Keywords

Functions Working spaces Casyopée Genesis Connected functional working spaces 

References

  1. Elbaz-Vincent, P. (2005). A cas as an assistant to reasoned instrumentation. In D. Guin, K. Ruthven, & L. Trouche (Eds.), The didactical challenge of symbolic calculators: turning a computational device into a mathematical instrument (pp. 41–65). New York: Springer.CrossRefGoogle Scholar
  2. Halbert, R., Lagrange, J.-B., Le Bihan, C., Le Feuvre, B., Manens, M.-C., & Meyrier, X. (2013). Les fonctions: Comprendre la notion et résoudre des problèmes de la 3ème à la Terminale. L’apport d’un logiciel dédié. I.R.E.M de RENNES– Université de RENNES.Google Scholar
  3. Kieran, C. (2007). Learning and teaching algebra at the middle school through college levels. In F. K. Lester Jr (Ed.), Second handbook of research on mathematics teaching and learning (pp. 707–762). Charlotte: National Council of Teachers of Mathematics, Information Age Publishing.Google Scholar
  4. Kuzniak, A. (2013). Teaching and learning geometry and beyond. In B. Ubuz, Ç. Haser, & M. A. Mariotti (Eds.), Proceedings of the Eighth Congress of European Research in Mathematics Education (CERME 8), (pp. 33–49). Antalya, Turkey.Google Scholar
  5. Laborde, C., Kynigos, C., Hollebrands, K., & Strasser, R. (2006). Teaching and learning geometry with technology. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 275–304). Rotterdam: Sense Publishers.Google Scholar
  6. Lagrange, J.-B. (1999). Complex calculators in the classroom: theoretical and practical reflections on teaching pre-calculus. International Journal of Computers for Mathematical Learning, 4(1), 51–81.CrossRefGoogle Scholar
  7. Lagrange, J.-B. (2011). Working with teachers: Innovative software at the boundary between research and classroom. In B. Ubuz (Ed.), Proceedings of 35th conference of the international group for the psychology of mathematics education (Vol. 3, pp. 113–120). Ankara: PME.Google Scholar
  8. Lagrange, J.-B. (2013). A functional perspective on the teaching of algebra: current challenges and the contribution of technology. International Journal for Technology in Mathematics Education, 21(1), 3–8.Google Scholar
  9. Lagrange, J.-B., & Caliskan, N. (2009). Usages de la technologie dans des conditions ordinaires: le cas de la géométrie dynamique au collège. Recherches en Didactique des Mathématiques, 29(2), 189–226.Google Scholar
  10. Lagrange, J.-B., & Psycharis, G. (2014). Investigating the potential of computers environments for the teaching and learning of functions. Technology, Knowledge and Learning, 19(3), 255–286.CrossRefGoogle Scholar
  11. MEN/DGESCO-IGEN. (2013). Les compétences mathématiques au lycée. http://eduscol.education.fr/ressources-maths.
  12. Minh, T. K. (2012a). Learning about functions with the help of technology: students’ instrumental genesis of a geometrical and symbolic environment. In T. Y. Tso (Ed.), Proceedings of the 36th conference of the international group for the psychology of mathematics education (Vol. 3, pp. 217–223). Taipei: PME.Google Scholar
  13. Minh, T. K. (2012b). Les fonctions dans un environnement numérique d’apprentissage: étude des apprentissages des élèves sur deux ans. Canadian Journal of Science, Mathematics and Technology Education, 12(3), 233–258.CrossRefGoogle Scholar
  14. Robert, A., & Vandebrouck, F. (2014). Proximités-en-acte mises en jeu en classe par les enseignants du secondaire et ZPD des élèves: analyses de séances sur des tâches complexes. Recherches en didactique des mathématiques, 43(2–3), 239–285.Google Scholar
  15. Thi, NN. (2011). La périodicité dans les enseignements scientifiques en France et au Viêt Nam : une ingénierie didactique d’introduction aux fonctions périodiques par la modélisation. Thèse de doctorat, Université Joseph Fourier et Université Pédagogique d’Ho Chi Minh Ville.Google Scholar
  16. Thompson, P. W. (2011). Quantitative reasoning and mathematical modeling. In L. L. Hatfield, S. Chamberlain, & S. Belbase (Eds.), New perspectives and directions for collaborative research in mathematics education. WISDOMe Mongraphs (Vol. 1, pp. 33–57). Laramie: University of Wyoming.Google Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.College of EducationHue UniversityHueVietnam
  2. 2.LDAR University Paris DiderotParisFrance
  3. 3.University of ReimsReimsFrance

Personalised recommendations