ZDM

, Volume 48, Issue 6, pp 757–773 | Cite as

How can histograms be useful for introducing continuous probability distributions?

Original Article

Abstract

The teaching of probability has changed a great deal since the end of the last century. The development of technologies is indeed part of this evolution. In France, continuous probability distributions began to be studied in 2002 by scientific 12th graders, but this subject was marginal and appeared only as an application of integral calculus. With the high school reform recently implemented (in 2012 for grade 12), continuous probability distributions now have an important place in the scientific section. As induced by official texts, the use of histogram as a link between descriptive statistics and continuous probability distributions through its analogy with density curves, is indeed a promising path for learning. In order to answer this demand, which is indeed of general interest, we wondered how density function could be introduced for such a purpose. We began with a study of how textbooks deal with that question, which led us to propose an alternative introductory classroom activity. The reason for this proposition is that, contrary to what is currently implemented in textbooks, a specific mathematical working space (MWS) has to be brought into play, making various mathematical domains intervene in turn and articulating them with each other.

Keywords

Probability High school Continuous distribution Density Mathematical Working Space 

References

  1. Asosan eruption database. (2015). Smithsonian Institution. National Museum of Natural History. http://www.volcano.si.edu/volcano.cfm?vn=282110. Accessed 3 Feb 2016.
  2. Atkin, A. (2013). Peirce’s Theory of Signs. In: Edward N. Zalta (Ed.), The Stanford Encyclopedia of Philosophy (Summer 2013 Edition). http://plato.stanford.edu/archives/sum2013/entries/peirce-semiotics/. Accessed 3 Feb 2016.
  3. Bansilal, S. (2012). Understanding student engagement with normal distribution problems. Pythagoras, 33(1), 37–49.CrossRefGoogle Scholar
  4. Bansilal, S. (2014). Using an apos framework to understand teachers’ responses to questions on the normal distribution. Statistics Education Research Journal, 13(2), 42–57.Google Scholar
  5. Batanero, C., Godino, J. D., & Roa, R. (2004a), Training teachers to teach probability. Journal of Statistics Education, 12(1). http://www.amstat.org/publications/jse/v12n1/batanero.html. Accessed 3 Feb 2016.
  6. Batanero, C., Tauber, L., & Meyer, R. (1999). From data analysis to inference: a research project on the teaching of normal distributions. In: Bulletin of the International Statistical Institute: Proceedings of the Fifty-Second Session of the International Statistical Institute (Tome LVIII, Book 1, pp. 57–58). Helsinki, Finland: International Statistical Institute.Google Scholar
  7. Batanero, C., Tauber, L. M., & Sánchez, V. (2004b). Students’ reasoning about the normal distribution. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 257–275). Dordrecht: Kluwer.CrossRefGoogle Scholar
  8. Ben-Zvi, D. (2000). Towards understanding the role of technological tools in statistical learning. Mathematics Thinking and Learning, 2(1&2), 127–155.CrossRefGoogle Scholar
  9. Ben-Zvi, D., & Arcavi, A. (2001). Junior high school student’s construction of global views of data and data representations. Educational Studies in Mathematics, 43, 35–65.CrossRefGoogle Scholar
  10. Biehler, R. (1991). Computers in probability education. In R. Kapadia & M. Borovcnik (Eds.), Chance encounters—probability in education (pp. 169–221). Dordrecht: Kluwer.CrossRefGoogle Scholar
  11. Chauvat, G. (2002). Quelques graphiques de plus ! Montrer et voir en statistiques. Repères-IREM, 47, 75–92.Google Scholar
  12. Chevallard, Y. (2007). Passé et présent de la théorie anthropologique du didactique. In L. Ruiz-Higueras, A. Estepa, & FJ García (Eds.), Sociedad, Escuela y Mathemáticas. Aportaciones de la Teoría Antropológica de la Didáctica (pp. 705–746). Jaén: Universidad de Jaén. Servicio de Publicaciones.Google Scholar
  13. Duval, R. (1995). Sémiosis et pensée humaine. Berne: Peter Lang.Google Scholar
  14. Forbes, S., Chapman, J., Harraway, J., Stirling, D., & Wild, C. (2014). Use of data visualization in the teaching of statistics: a New Zealand perspective. Statistics Education Research Journal, 13(2), 187–201.Google Scholar
  15. Gal, I. (2002). Adult’s statistical literacy. Meanings, components, responsibilities. International Statistical Review, 70(1), 1–25.CrossRefGoogle Scholar
  16. Gómez-Chacón, I., & Kuzniak, A. (2015). Spaces for geometric work: figural, instrumental, and discursive geneses of reasoning in a technological environment. International Journal of Science and Mathematics Education, 13, 201–223.CrossRefGoogle Scholar
  17. Hawkins, A., Jolliffe, F., & Glickman, L. (1991). Teaching statistical concepts. London: Longman.Google Scholar
  18. Henry, M. (1999). L’introduction des probabilités au lycée : un processus de modélisation comparable à celui de la géométrie. Repères-IREM, 36, 15–34.Google Scholar
  19. Henry, M. (2003). Des lois de probabilités continues en terminale S, pourquoi et pour quoi faire ? Repères-IREM, 51, 5–25.Google Scholar
  20. Holmes, P. (1980). Statistics in your world. Slough: Foulsham Educational.Google Scholar
  21. Houdement, C., & Kuzniak, A. (2006). Paradigmes géométriques et enseignement de la géométrie. Annales de didactique et des sciences cognitives, 10, 5–53.Google Scholar
  22. Kuhn, T. S. (1962). La structure des révolutions scientifiques. Flammarion.Google Scholar
  23. Kuzniak, A. (2011). L’espace de Travail Mathématique et ses genèses. Annales de didactique et de sciences cognitives, 16, 9–24.Google Scholar
  24. Kuzniak, A., & Richard, P. R. (2014). Spaces for mathematical work: viewpoints and perspectives. Revista Latinoamericana de Investigación en Matemática Educativa, 17(4-I), 17–27.Google Scholar
  25. Ministère de l’éducation nationale (MEN). (2009). Ressources pour la classe de seconde. Probabilités et statistiques. http://cache.media.eduscol.education.fr/file/Programmes/17/9/Doc_ressource_proba-stats_109179.pdf. Accessed 3 Feb 2016.
  26. Ministère de l’Éducation nationale, de la jeunesse et de la vie associative (MENJVA). (2011). Programme de l’enseignement spécifique et de spécialité de mathématiques. Classe terminale de la série scientifique. In: Bulletin Officiel spécial, n°8 (13 October 2011). http://cache.media.education.gouv.fr/file/special_8_men/98/4/mathematiques_S_195984.pdf. Accessed 3 Feb 2016.
  27. Ministère de l’Éducation nationale, de la Jeunesse et de la Vie associative (MENJVA) & DGESCO. (2012). Ressources pour la classe terminale générale et technologique. Probabilités et statistique. http://cache.media.eduscol.education.fr/file/Mathematiques/11/5/LyceeGT_ressources_Math_T_proba-stat_207115.pdf. Accessed 3 Feb 2016.
  28. Ministère de la Jeunesse, de l’Éducation nationale et de la Recherche (MJENR). (2002). Mathématiques. Classe terminale. Série économique et sociale. Série scientifique. Paris: Centre national de documentation pédagogique.Google Scholar
  29. Ministère de l’Éducation nationale (MEN). (2007). Ressources pour les classes de 6è, 5è, 4è, et 3è du collège. Organisation et gestion de données au collège. http://cache.media.eduscol.education.fr/file/Programmes/17/5/doc_acc_clg_organisation_donnees_109175.pdf. Accessed 3 Feb 2016.
  30. Montoya Delgadillo, E., & Vivier, L. (2014). Les changements de domaine dans le cadre des Espaces de Travail Mathématique. Annales de didactique et de sciences cognitives, 19, 73–102.Google Scholar
  31. Ortiz, J. J., Cañizares, M. J., Batanero, C., Serrano, L. (2002). An experimental study of probabilistic language in secondary school textbooks. Contributed paper to the International Conference On Teaching Statistics 6 (ICOTS 6), Cape Town.Google Scholar
  32. Parzysz, B. (2011). Quelques questions didactiques de la statistique et des probabilités. Annales de Didactique et de Sciences cognitives, 16, 127–147.Google Scholar
  33. Parzysz, B. (2016). Les probabilités dans l’enseignement secondaire, d’hier à demain. In A. Robert (Ed.), Formation pour l’enseignement des probabilités et de la statistique au lycée (Chapter 1). Besançon: Presses Universitaires de Franche-Comté (to appear).Google Scholar
  34. Perrin, D. (2015). Remarques sur l’enseignement des probabilités et de la statistique au lycée. Statistique et enseignement, 6(1), 51–63. http://www.statistique-et-enseignement.fr. Accessed 3 Feb 2016.
  35. Pfannkuch, M., & Reading, C. (2006). Reasoning about distribution: A complex process. Statistics Education Research Journal, 5(2), 4–9.Google Scholar
  36. Roditi, E. (2009). L’histogramme : à la recherche du savoir à enseigner. Spirale Revue de recherches en éducation, 43, 129–138.Google Scholar
  37. Vere-Jones, D. (1995). The coming of age of statistical education. International Statistical Review, 63(1), 3–23.CrossRefGoogle Scholar
  38. Wild, C. (2006). The concept of distribution. Statistics Education Research Journal, 5(2), 10–26.Google Scholar
  39. Wild, C., & Pfannkuch, M. (1999). Statistical thinking in empirical enquiry. International Statistical Review, 67(3), 221–248.CrossRefGoogle Scholar
  40. Wilensky, U. (1997). What is normal anyway? Therapy for epistemological anxiety. Educational Studies in Mathematics, 33(2), 171–202.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  1. 1.Laboratoire de Didactique André Revuz, LDAR (EA 4434)Université Paris DiderotParis Cedex 13France
  2. 2.Université d’OrléansOrléans Cédex 2France

Personalised recommendations