ZDM

, Volume 48, Issue 1–2, pp 55–67 | Cite as

Early Career Teachers’ ability to focus on typical students errors in relation to the complexity of a mathematical topic

  • Lena Pankow
  • Gabriele Kaiser
  • Andreas Busse
  • Johannes König
  • Sigrid Blömeke
  • Jessica Hoth
  • Martina Döhrmann
Original Article

Abstract

The paper presents results from a computer-based assessment in which 171 early career mathematics teachers from Germany were asked to anticipate typical student errors on a given mathematical topic and identify them under time constraints. Fast and accurate perception and knowledge-based judgments are widely accepted characteristics of teacher competence. The item-wise length of anticipation time, the complexity of mathematical topics and the frequency of right or wrong given answers were used as indicators for teacher competence. The data revealed that anticipation time and the complexity of mathematical topics were related with each other. The groups of test persons with correct and incorrect answers behaved contrarily to the length of the anticipation time. Whereas test persons with correct answers needed more time to anticipate typical errors with an increasing complexity of the errors, the test persons giving false answers responded very quickly, even with an increasing error complexity. This finding confirms results of the expertise research, which emphasize that expert teachers focus more intensively if this is required by a complex task.

Keywords

Professional competences Typical errors Error anticipation Early career teacher Timed test 

References

  1. Arthur, W., Tubré, T., Paul, D. S., & Edens, P. S. (2003). Teaching effectiveness: the relationship between reactions and learning evaluation criteria. Educational Psychology, 23, 275–285.CrossRefGoogle Scholar
  2. Baumert, J., & Kunter, M. (2006). Stichwort: Professionelle Kompetenz von Lehrkräften. Zeitschrift für Erziehungswissenschaft, 9, 469–520.CrossRefGoogle Scholar
  3. Berliner, D. C. (1986). In pursuit of the expert pedagogue. Educational Researcher, 15, 5–13.CrossRefGoogle Scholar
  4. Beutelspacher, A. (2008). Horizonterweiternde Stolpersteine: über die Unmöglichkeit und die Notwendigkeit von Fehlern in der Mathematik. In R. Caspary (Ed.), Nur wer Fehler macht, kommt weiter (pp. 86–96). Freiburg: Herder.Google Scholar
  5. Blömeke, S., Hsieh, F.-J., Kaiser, G., & Schmidt, W. H. (Eds.). (2014a). International perspectives on teacher knowledge, beliefs and opportunities to learn: TEDS-M results. Dordrecht: Springer.Google Scholar
  6. Blömeke, S., König, J., Busse, A., Suhl, U., Benthien, J., Döhrmann, M., & Kaiser, G. (2014b). Von der Lehrerausbildung in den Beruf-Fachbezogenes Wissen als Voraussetzung für Wahrnehmung, Interpretation und Handeln im Unterricht. Zeitschrift für Erziehungswissenschaft, 17, 509–542.CrossRefGoogle Scholar
  7. Borko, H., & Livingston, C. (1989). Cognition and improvisation: differences in mathematics instructed by expert and novice teachers. American Educational Research Journal, 26, 413–498.CrossRefGoogle Scholar
  8. Bortz, J., & Schuster, C. (2010). Statistik für Human- und Sozialwissenschaftler. Berlin: Springer.CrossRefGoogle Scholar
  9. Bransford, J., Brown, A., Cocking, R. (2000). How people learn: Brain, mind, experience, and school. National Research Council Commission on Behavioral & Social Sciences & Education, Committee on Developments in the Science of Learning. Washington, DC: US National Academy Press.Google Scholar
  10. Brown, A. L., & Campione, J. C. (1994). Guided discovery in a community of learners. In K. McGilly (Eds.), Classroom Lessons: Integrating Cognitive Theory and Classroom Practice (pp. 229–270). Cambridge, MA: MIT Press.Google Scholar
  11. Calderhead, J. (1981). A psychological approach to research on teachers’ classroom decision-making. British Education Research Journal, 7, 51–57.CrossRefGoogle Scholar
  12. Carter, K. (1990). Teachers’ knowledge and learning to teach. In W. R. Houston (Ed.), Handbook of research on teacher education (pp. 291–310). New York: Macmillan.Google Scholar
  13. Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. C. (1988). Expert-novice differences in perceiving and processing visual information. Journal of Teacher Education, 39, 25–31.CrossRefGoogle Scholar
  14. Chi, M. T. H. (2011). Theoretical perspectives, methodological approaches, and trends in the study of expertise. In Y. Li & G. Kaiser (Eds.), Expertise in mathematics instruction: An international perspective (pp. 17–39). New York: Springer.CrossRefGoogle Scholar
  15. Clermont, C. P., Borko, H., & Krajcik, J. S. (1994). Comparative study of the pedagogical content knowledge of experienced and novice chemical demonstrators. Journal of Research in Science Teaching, 31(4), 419–441.CrossRefGoogle Scholar
  16. Davison, M. L., Semmes, R., Huang, L., & Close, C. N. (2011). On the reliability and validity of a numerical reasoning speed dimension derived from response times collected in computerized testing. Educational and Psychological Measurement, 72, 245–263.CrossRefGoogle Scholar
  17. Dehoney, J. (1995). Cognitive task analysis: implications for the theory and practice of instructional design. In Proceedings of the annual national convention of the Association for Educational Communications and Technology (pp. 113–123) (ERIC document reproduction service no. ED 383 294).Google Scholar
  18. Eichelmann, A., Narciss, S., Schnaubert, L., & Melis, E. (2011). Typische Fehler bei der Addition und Subtraktion von Brüchen-Ein Review zu empirischen Fehleranalysen. Journal für Mathematik-Didaktik, 33(1), 29–57.CrossRefGoogle Scholar
  19. Gobet, F. (2005). Chunking models of expertise: implications for education. Applied Cognitive Psychology, 19(2), 183–204.CrossRefGoogle Scholar
  20. Groves, M., O’Rourke, P., & Alexander, H. (2013). The clinical reasoning characteristics of diagnostic experts. Medical Teachers, 25(3), 308–313.CrossRefGoogle Scholar
  21. Hensel, M. (2012). Kurvendiskussion. Lern- und Übungsbuch für die Abiturprüfung Mathematik. Norderstedt: Books on Demand.Google Scholar
  22. Hoth, J., Döhrmann, M., Kaiser, G., Busse, A., König, J., & Blömeke, S. (2015). Diagnostic competence of primary school mathematics teachers during classroom situations. ZDM Mathematics Education, 47, (this issue).Google Scholar
  23. Jones, C. M., & Miles, T. R. (1978). Use of advance cues in predicting the flight of a lawn tennis ball. Journal of Human Move Studies, 4, 231–235.Google Scholar
  24. Kaiser, G., Busse, A., Hoth, J., König, J., & Blömeke, S. (2015). About the complexities of video-based assessments: theoretical and methodological approaches to overcoming shortcomings of research on teachers’ competence. International Journal of Science and Mathematics Education, 13(2), 369–387.CrossRefGoogle Scholar
  25. Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: an analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.CrossRefGoogle Scholar
  26. König, J., Blömeke, S., & Kaiser, G. (2015). Early career mathematics teachers’ general pedagogical knowledge and skills: do teacher education, teaching experience, and working conditions make a difference? International Journal of Science and Mathematics Education, 13(2), 331–350.CrossRefGoogle Scholar
  27. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’ general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88.CrossRefGoogle Scholar
  28. Krauss, S., & Brunner, M. (2011). Schnelles Beurteilen von Schülerantworten: Ein Reaktionszeittest für Mathematiklehrer/innen. Journal für Mathematikdidaktik, 32(2), 233–251.CrossRefGoogle Scholar
  29. Leinhardt, G. (1989). Math Lessons: A contrast of novice and expert competence. Journal for Research in Mathematics Education, 20(1), 52–75.CrossRefGoogle Scholar
  30. Livingston, C., & Borko, H. (1989). Expert-novice differences in teaching: a cognitive analysis and implications for teacher education. Journal of Teacher Education, 40, 36–42.CrossRefGoogle Scholar
  31. McMorris, T. (2004). Acquisition and performance of sports skills. Chichester: Wiley.Google Scholar
  32. Mitchell, M. L., & Jolley, J. M. (2013). Research design explained. Belmont: Wadsworth.Google Scholar
  33. Mulder, R., & Gruber, H. (2011). Die Lehrperson im Lichte von Professions-, Kompetenz- und Expertiseforschung: Die drei Seiten einer Medaille. In O. Zlatkin-Troitschanskaia (Ed.), Stationen empirischer Bildungsforschung (pp. 427–438). Wiesbaden: Verlag für Sozialwissenschaften.CrossRefGoogle Scholar
  34. Padberg, F. (1986). Über typische Schülerschwierigkeiten in der Bruchrechnung-Bestandsaufnahme und Konsequenzen. Der Mathematikunterricht, 32(3), 58–77.Google Scholar
  35. Padberg, F. (1995). Didaktik der Bruchrechnung: gemeine Brüche-Dezimalbrüche. Heidelberg: Spektrum.Google Scholar
  36. Padberg, F. (2009). Didaktik der Bruchrechnung für Lehrerausbildung und Lehrerfortbildung. Heidelberg: Spektrum.CrossRefGoogle Scholar
  37. Peterson, P. L., Marx, R. W., & Clark, C. M. (1978). Teacher planning, teacher behavior, and student achievement. American Educational Research Journal, 15(3), 417–432.CrossRefGoogle Scholar
  38. Phillips, L. H., & Rabbitt, P. M. A. (1995). Impulsivity and speed-accuracy strategies in intelligence test performance. Intelligence, 21, 13–29.CrossRefGoogle Scholar
  39. Rölke, H. (2012). The Item Builder: A graphical authoring system for complex item development. In T. Bastiaens & G. Marks (Eds.), Proceedings of World Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education (pp. 344–353). Chesapeake: AACE.Google Scholar
  40. Sabers, D. S., Cushing, K. S., & Berliner, D. C. (1991). Differences among teachers in a task characterized by simultaneity, multidimensionality, and immediacy. American Educational Research Journal, 28, 63–88.Google Scholar
  41. Seidel, T., Blomberg, G., & Stürmer, K. (2010). „Observer“-validation of a video-based instrument to assess the professional view on classrooms. Zeitschrift für Pädagogik, 56. Beiheft, 296–300.Google Scholar
  42. Sherin, M. G., Jacobs, V. R., & Philipp, R. A. (Eds.). (2011). Mathematics teacher noticing. Seeing through teachers’ eyes. New York: Routledge.Google Scholar
  43. Shulman, L. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Review, 57, 1–22.CrossRefGoogle Scholar
  44. Van Es, E. A., & Sherin, M. G. (2002). Learning to notice: Scaffolding new teachers’ interpretations of classroom interactions. Journal of Technology and Teacher Education, 10(4), 571–596.Google Scholar
  45. Wartha, S. (2007). Längsschnittliche Untersuchungen zur Entwicklung des Bruchzahlbegriffs. Hildesheim: Franzbecker.Google Scholar
  46. Weinert, F. E. (1996). „Der gute Lehrer“, „die gute Lehrerin“im Spiegel der Wissenschaft: Was macht Lehrende wirksam und was führt zu ihrer Wirksamkeit? Beiträge zur Lehrerbildung, 14, 141–151.Google Scholar
  47. Weinert, F. E., Schrader, F.-W., & Helmke, A. (1990). Unterrichtsexpertise: Ein Konzept zur Verringerung der Kluft zwischen zwei theoretischen Paradigmen. In L.-M. Alisch, J. Baumert, & K. Beck (Eds.), Professionswissen und Professionalisierung (pp. 173–206). Braunschweig: Copy-Center Colmsee.Google Scholar
  48. Wu, H. (2008). Fractions, decimals, and rational numbers. University of California, Berkeley, Department of Mathematics. https://math.berkeley.edu/~wu. Accessed 12 Dec 2014.

Copyright information

© FIZ Karlsruhe 2016

Authors and Affiliations

  • Lena Pankow
    • 1
  • Gabriele Kaiser
    • 1
  • Andreas Busse
    • 1
  • Johannes König
    • 2
  • Sigrid Blömeke
    • 3
  • Jessica Hoth
    • 4
  • Martina Döhrmann
    • 4
  1. 1.Faculty of EducationUniversity of HamburgHamburgGermany
  2. 2.University of CologneCologneGermany
  3. 3.Centre for Educational Measurement at University of OsloOsloNorway
  4. 4.University of VechtaVechtaGermany

Personalised recommendations