ZDM

, Volume 48, Issue 3, pp 351–363 | Cite as

When errors count: an EEG study on numerical error monitoring under performance pressure

  • Frieder L. Schillinger
  • Bert De Smedt
  • Roland H. Grabner
Original Article

Abstract

In high-stake tests, students often display lower achievements than expected based on their skill level—a phenomenon known as choking under pressure. This imposes a serious problem for many students, especially for test-anxious individuals. Among school subjects, mathematics has been shown to be particularly vulnerable to choking. To succeed in a mathematics test, it is important to monitor ongoing responses, and to dynamically adapt to errors. However, it is largely unknown how academic pressure changes response monitoring and whether this depends on individual differences in test anxiety. In the present study, we aimed to start answering these questions by combining behavioral performance measurements with electroencephalography (EEG) indices of response monitoring. Eighteen participants performed a numerical Stroop task in two pressure scenarios: a high pressure condition modeling a real-life test situation and a low pressure control condition. While behavioral performance data provided mixed evidence, EEG indices suggested changed response monitoring in the high pressure condition as well as in relatively test-anxious participants. These findings highlight the role of response monitoring under academic performance pressure.

Keywords

Choking under pressure Test anxiety Response monitoring Event-related negativity (ERN) 

Notes

Acknowledgments

The authors want to thank Anna Hinze and Isabel Müller for their help with data collection.

Supplementary material

11858_2015_746_MOESM1_ESM.pdf (123 kb)
Figure S1. Scatter plot of mean response times (A) and accuracy (B) as a function ofperformance pressure and test anxiety (raw values). Numbers indicate individual subjects.Linear regression lines were fitted for each pressure condition for illustrative purposesd. (PDF 853 kb)

References

  1. Ansari, D., Grabner, R. H., Koschutnig, K., Reishofer, G., & Ebner, F. (2011). Individual differences in mathematical competence modulate brain responses to arithmetic errors: an fMRI study. Learning and Individual Differences, 21(6), 636–643. doi: 10.1016/j.lindif.2011.07.013.CrossRefGoogle Scholar
  2. Ashcraft, M. H. (2002). Math anxiety: personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11(5), 181–185. doi: 10.1111/1467-8721.00196.CrossRefGoogle Scholar
  3. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2014). lme4: linear mixed-effects models using S4 classes. R package version 1.1-6. R. doi:http://CRAN.R-project.org/package=lme4
  4. Baumeister, R. F. (1984). Choking under pressure: self-consciousness and paradoxical effects of incentives on skillful performance. Journal of Personality and Social Psychology, 46, 610–620. doi: 10.1037/0022-3514.46.3.610.CrossRefGoogle Scholar
  5. Beilock, S. L. (2008). Math performance in stressful situations. Current Directions in Psychological Science, 17(5), 339–343. doi: 10.1111/j.1467-8721.2008.00602.x.CrossRefGoogle Scholar
  6. Beilock, S. L., & Carr, T. H. (2005). When high-powered people fail: working memory and “choking under pressure” in math. Psychological Science, 16(2), 101–105. doi: 10.1111/j.0956-7976.2005.00789.x.CrossRefGoogle Scholar
  7. Beilock, S. L., & DeCaro, M. S. (2007). From poor performance to success under stress: working memory, strategy selection, and mathematical problem solving under pressure. Journal of Experimental Psychology. Learning, Memory, and Cognition, 33(6), 983–998. doi: 10.1037/0278-7393.33.6.983.CrossRefGoogle Scholar
  8. Beilock, S. L., Kulp, C. A., Holt, L. E., & Carr, T. H. (2004). More on the fragility of performance: choking under pressure in mathematical problem solving. Journal of Experimental Psychology: General, 133(4), 584–600. doi: 10.1037/0096-3445.133.4.584.CrossRefGoogle Scholar
  9. Besner, D., & Coltheart, M. (1979). Ideographic and alphabetic processing in skilled reading of English. Neuropsychologia, 17(5), 467–472. doi: 10.1016/0028-3932(79)90053-8.CrossRefGoogle Scholar
  10. Bugden, S., & Ansari, D. (2011). Individual differences in children’s mathematical competence are related to the intentional but not automatic processing of Arabic numerals. Cognition, 118(1), 35–47. doi: 10.1016/j.cognition.2010.09.005.CrossRefGoogle Scholar
  11. Calvo, M. G., Ramos, P. M., & Estevez, A. (1992). Test anxiety and comprehension efficiency: the role of prior knowledge and working memory deficits. Anxiety Stress Coping, 5, 125–138. doi: 10.1080/10615809208250492.CrossRefGoogle Scholar
  12. Carter, C. S. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747–749. doi: 10.1126/science.280.5364.747.CrossRefGoogle Scholar
  13. Coles, M. G., Scheffers, M. K., & Holroyd, C. B. (2001). Why is there an ERN/Ne on correct trials? Response representations, stimulus-related components, and the theory of error-processing. Biological Psychology, 56(3), 173–189. doi: 10.1016/S0301-0511(01)00076-X.CrossRefGoogle Scholar
  14. De Smedt, B., Ansari, D., Grabner, R. H., Hannula-Sormunen, M., Schneider, M., & Verschaffel, L. (2011). Cognitive neuroscience meets mathematics education: it takes two to Tango. Educational Research Review, 6(3), 232–237. doi: 10.1016/j.edurev.2011.10.003.CrossRefGoogle Scholar
  15. De Smedt, B., Verschaffel, L., & Ghesquière, P. (2009). The predictive value of numerical magnitude comparison for individual differences in mathematics achievement. Journal of Experimental Child Psychology, 103(4), 469–479. doi: 10.1016/j.jecp.2009.01.010.CrossRefGoogle Scholar
  16. DeCaro, M. S., Thomas, R. D., Albert, N. B., & Beilock, S. L. (2011). Choking under pressure: multiple routes to skill failure. Journal of Experimental Psychology: General, 140(3), 390–406. doi: 10.1037/a0023466.CrossRefGoogle Scholar
  17. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. doi: 10.1016/j.jneumeth.2003.10.009.CrossRefGoogle Scholar
  18. Else-Quest, N. M., Hyde, J. S., & Linn, M. C. (2010). Cross-national patterns of gender differences in mathematics: a meta-analysis. Psychological Bulletin, 136(1), 103–127. doi: 10.1037/a0018053.CrossRefGoogle Scholar
  19. Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: attentional control theory. Emotion, 7(2), 336–353. doi: 10.1037/1528-3542.7.2.336.CrossRefGoogle Scholar
  20. Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991). Effects of crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology, 78(6), 447–455. doi: 10.1016/0013-4694(91)90062-9.CrossRefGoogle Scholar
  21. Ganushchak, L. Y., & Schiller, N. O. (2008). Motivation and semantic context affect brain error-monitoring activity: an event-related brain potentials study. NeuroImage, 39(1), 395–405. doi: 10.1016/j.neuroimage.2007.09.001.CrossRefGoogle Scholar
  22. Gehring, W. J., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A Neural system for error detection and compensation. Psychological Science, 4(6), 385–390. doi: 10.1111/j.1467-9280.1993.tb00586.x.CrossRefGoogle Scholar
  23. Gehring, W. J., Liu, Y., Orr, J. M., & Carp, J. (2012). The error-related negativity (ERN/Ne). In The Oxford Handbook of Event-related Potential Components.Google Scholar
  24. Grabner, R. H., & Ansari, D. (2010). Promises and potential pitfalls of a “cognitive neuroscience of mathematics learning”. ZDM The International Journal on Mathematics Education, 42(6), 655–660. doi: 10.1007/s11858-010-0283-4.CrossRefGoogle Scholar
  25. Hajcak, G., McDonald, N., & Simons, R. F. (2003). Anxiety and error-related brain activity. Biological Psychology, 64(1–2), 77–90. doi: 10.1016/S0301-0511(03)00103-0.CrossRefGoogle Scholar
  26. Hajcak, G., McDonald, N., & Simons, R. F. (2004). Error-related psychophysiology and negative affect. Brain and Cognition, 56(2), 189–197. doi: 10.1016/j.bandc.2003.11.001.CrossRefGoogle Scholar
  27. Hajcak, G., Moser, J. S., Yeung, N., & Simons, R. F. (2005a). On the ERN and the significance of errors. Psychophysiology, 42(2), 151–160. doi: 10.1111/j.1469-8986.2005.00270.x.CrossRefGoogle Scholar
  28. Hajcak, G., Nieuwenhuis, S., Ridderinkhof, K. R., & Simons, R. F. (2005b). Error-preceding brain activity: robustness, temporal dynamics, and boundary conditions. Biological Psychology, 70(2), 67–78. doi: 10.1016/j.biopsycho.2004.12.001.CrossRefGoogle Scholar
  29. Hembree, R. (1988). Correlates, causes, effects, and treatment of test anxiety. Review of Educational Research (Vol. 58). doi: 10.3102/00346543058001047
  30. Henik, A., & Tzelgov, J. (1982). Is three greater than five: the relation between physical and semantic size in comparison tasks. Memory & cognition, 10(4), 389–395. doi: 10.3758/BF03202431.CrossRefGoogle Scholar
  31. Hirsh, J. B., & Inzlicht, M. (2010). Error-related negativity predicts academic performance. Psychophysiology, 47(1), 192–196. doi: 10.1111/j.1469-8986.2009.00877.x.CrossRefGoogle Scholar
  32. Hodapp, V., Rohrmann, S., & Ringeisen, T. (2011). PAF-Prüfungsangstfragebogen. Hogrefe Göttingen.Google Scholar
  33. Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: the numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103(1), 17–29. doi: 10.1016/j.jecp.2008.04.001.CrossRefGoogle Scholar
  34. Kaufmann, L., Koppelstaetter, F., Delazer, M., Siedentopf, C., Rhomberg, P., Golaszewski, S., et al. (2005). Neural correlates of distance and congruity effects in a numerical Stroop task : an event-related fMRI study. NeuroImage, 25, 888–898. doi: 10.1016/j.neuroimage.2004.12.041.CrossRefGoogle Scholar
  35. Keith, N., Hodapp, V., Schermelleh-engel, K., & Moosbrugger, H. (2003). Cross-sectional and longitudinal confirmatory factor models for the german test anxiety inventory: a construct validation. Anxiety, Stress & Coping, 16(3), 251–270. doi: 10.1080/1061580031000095416.CrossRefGoogle Scholar
  36. Kim, E. Y., Iwaki, N., Imashioya, H., Uno, H., & Fujita, T. (2007). Error-related negativity in a visual go/no-go task: children vs adults. Developmental Neuropsychologyeuropsychology, 31(2), 181–191. doi: 10.1080/87565640701190775.CrossRefGoogle Scholar
  37. Kim, E. Y., Iwaki, N., Uno, H., & Fujita, T. (2005). Error-related negativity in children: effect of an observer. Developmental Neuropsychology, 28(3), 871–883. doi: 10.1207/s15326942dn2803_7.CrossRefGoogle Scholar
  38. Kliegl, R., Wei, P., Dambacher, M., Yan, M., & Zhou, X. (2011). Experimental effects and individual differences in linear mixed models: estimating the relationship between spatial, object, and attraction effects in visual attention. Frontiers in Psychology, 1, 1–12. doi: 10.3389/fpsyg.2010.00238.Google Scholar
  39. Landerl, K., Bevan, A., & Butterworth, B. (2004). Developmental dyscalculia and basic numerical capacities: a study of 8-9-year-old students. Cognition, 93(2), 99–125. doi: 10.1016/j.cognition.2003.11.004.CrossRefGoogle Scholar
  40. Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213. doi: 10.3389/fnhum.2014.00213.CrossRefGoogle Scholar
  41. Luck, S. J. (2014). An introduction to the event-related potential technique (2nd ed.). New York: MIT Press.Google Scholar
  42. Moser, J. S., Moran, T. P., Schroder, H. S., Donnellan, M. B., & Yeung, N. (2013). On the relationship between anxiety and error monitoring: a meta-analysis and conceptual framework. Frontiers in Human Neuroscience, 7, 466. doi: 10.3389/fnhum.2013.00466.CrossRefGoogle Scholar
  43. Nguyen, H.-H. D., & Ryan, A. M. (2008). Does stereotype threat affect test performance of minorities and women? A meta-analysis of experimental evidence. The Journal of Applied Psychology, 93(6), 1314–1334. doi: 10.1037/a0012702.CrossRefGoogle Scholar
  44. OECD. (2013). PISA 2012 results: ready to learn – students’ engagement, drive and self-beliefs (Volume III). PISA: OECD Publishing.CrossRefGoogle Scholar
  45. Olvet, D., & Hajcak, G. (2009a). Reliability of error-related brain activity. Brain Research, 1284, 89–99. doi: 10.1016/j.brainres.2009.05.079.CrossRefGoogle Scholar
  46. Olvet, D., & Hajcak, G. (2009b). The stability of error related brain activity with increasing trials. Psychophysiology, 46, 957–961. doi: 10.1111/j.1469-8986.2009.00848.x.CrossRefGoogle Scholar
  47. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42. doi: 10.1146/annurev.ne.13.030190.000325.CrossRefGoogle Scholar
  48. R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/
  49. Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: a review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. doi: 10.1016/j.lindif.2009.10.005.CrossRefGoogle Scholar
  50. Ramirez, G., & Beilock, S. L. (2011). Writing about testing worries boosts exam performance in the classroom. Science, 331(6014), 211–213. doi: 10.1126/science.1199427.CrossRefGoogle Scholar
  51. Ridderinkhof, K. R., Van Den Wildenberg, W. P. M., Segalowitz, S. J., & Carter, C. S. (2004). Neurocognitive mechanisms of cognitive control: The role of prefrontal cortex in action selection, response inhibition, performance monitoring, and reward-based learning. Brain and Cognition, 56(2 SPEC. ISS.), 129–140. doi: 10.1016/j.bandc.2004.09.016
  52. Riesel, A., Weinberg, A., Endrass, T., Meyer, A., & Hajcak, G. (2013). The ERN is the ERN is the ERN? Convergent validity of error-related brain activity across different tasks. Biological Psychology, 93(3), 377–385. doi: 10.1016/j.biopsycho.2013.04.007.CrossRefGoogle Scholar
  53. Rousselle, L., & Noël, M. P. (2007). Basic numerical skills in children with mathematics learning disabilities: a comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102(3), 361–395. doi: 10.1016/j.cognition.2006.01.005.CrossRefGoogle Scholar
  54. Schielzeth, H. (2010). Simple means to improve the interpretability of regression coefficients. Methods in Ecology and Evolution, 1(2), 103–113. doi: 10.1111/j.2041-210X.2010.00012.x.CrossRefGoogle Scholar
  55. Schlögl, A., Keinrath, C., Zimmermann, D., Scherer, R., Leeb, R., & Pfurtscheller, G. (2007). A fully automated correction method of EOG artifacts in EEG recordings. Clinical Neurophysiology, 118(1), 98–104. doi: 10.1016/j.clinph.2006.09.003.CrossRefGoogle Scholar
  56. Schneider, M., Beeres, K., Coban, L., Simon, M., Schmidt, S. S., Stricker, J., & De Smedt, B. (2015). Associations of non-symbolic and symbolic numerical magnitude processing with mathematical competence: a meta-analysis. Developmental Science. doi: 10.1111/desc.12372
  57. Simons, R. F. (2010). The way of our errors: theme and variations. Psychophysiology, 47(1), 1–14. doi: 10.1111/j.1469-8986.2009.00929.x.CrossRefGoogle Scholar
  58. Spielberger, C. D. (1980). Test Anxiety Inventory (“Test Attitude Inventory”). Preliminary professional manual. Palo Alto: Consulting Psychologists Press.Google Scholar
  59. Suárez-Pellicioni, M., Núñez-Peña, M. I., & Colomé, A. (2013). Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials. PLoS ONE, 8(11), e81143. doi: 10.1371/journal.pone.0081143.CrossRefGoogle Scholar
  60. Vogel, S. E., Remark, A., & Ansari, D. (2015). Differential processing of symbolic numerical magnitude and order in 1st grade children. Journal of Experimental Child Psychology, 129, 26–39. doi: 10.1016/j.jecp.2014.07.010.CrossRefGoogle Scholar
  61. Weinberg, A., & Hajcak, G. (2011). Longer term test-retest reliability of error-related brain activity. Psychophysiology, 48(10), 1420–1425. doi: 10.1111/j.1469-8986.2011.01206.x.CrossRefGoogle Scholar
  62. Weinberg, A., Riesel, A., & Hajcak, G. (2011). Integrating multiple perspectives on error-related brain activity: the ERN as a neural indicator of trait defensive reactivity. Motivation and Emotion, 36(1), 84–100. doi: 10.1007/s11031-011-9269-y.CrossRefGoogle Scholar
  63. Wine, J. (1971). Test anxiety and direction of attention. Psychological Bulletin, 76, 92–104. doi: 10.1037/h0031332.CrossRefGoogle Scholar
  64. Zeidner, M. (2007). Test anxiety in educational contexts. concepts, findings, and future directions. In Emotion in Education (pp. 165–184). doi: 10.1016/B978-012372545-5/50011-3

Copyright information

© FIZ Karlsruhe 2015

Authors and Affiliations

  • Frieder L. Schillinger
    • 1
    • 2
  • Bert De Smedt
    • 3
  • Roland H. Grabner
    • 2
  1. 1.Georg-Elias-Müller-Institute of PsychologyUniversity of GöttingenGöttingenGermany
  2. 2.Department of PsychologyUniversity of GrazGrazAustria
  3. 3.Faculty of Psychology and Educational SciencesUniversity of LeuvenLeuvenBelgium

Personalised recommendations