ZDM

, Volume 48, Issue 1–2, pp 97–109 | Cite as

Further exploration of the classroom video analysis (CVA) instrument as a measure of usable knowledge for teaching mathematics: taking a knowledge system perspective

  • Nicole B. Kersting
  • Taliesin Sutton
  • Crystal Kalinec-Craig
  • Kathleen Jablon Stoehr
  • Saeideh Heshmati
  • Guadalupe Lozano
  • James W. Stigler
Original Article

Abstract

In this article we report further explorations of the classroom video analysis instrument (CVA), a measure of usable teacher knowledge based on scoring teachers’ written analyses of classroom video clips. Like other researchers, our work thus far has attempted to identify and measure separable components of teacher knowledge. In this study we take a different approach, viewing teacher knowledge as a system in which different knowledge components are flexibly brought to bear on specific teaching situations. We explore this idea through a series of exploratory factor analyses of teachers clip level scores across three different CVA scales (fractions, ratio and proportions, and variables, expressions, and equations), finding that a single dominant dimension explained from 55 to 63 % of variance in the scores. We interpret these results as consistent with a view that usable teacher knowledge requires both individual knowledge components, and an overarching ability to access and apply those components that are most relevant to a particular teaching episode.

References

  1. Alexander, P. A., & Judy, J. E. (1988). The interaction of domain-specific and strategic knowledge in academic performance. Review of Educational Research, 58(4), 375–404. doi:10.3102/00346543058004375.CrossRefGoogle Scholar
  2. Ball, D. L. (2000). Bridging practices: intertwining content and pedagogy in teaching and learning to teach. Journal of Teacher Education, 51(3), 241–247. doi:10.1177/0022487100051003013.CrossRefGoogle Scholar
  3. Ball, D., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 83–104). Westport: Ablex.Google Scholar
  4. Ball, D. L., & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward a practice-based theory of professional education. In G. Sykes & L. Darling-Hammond (Eds.), Teaching as the learning profession: Handbook of policy and practice (pp. 3–32). San Francisco: Jossey Bass.Google Scholar
  5. Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59(5), 398–407. doi:10.1177/0022487108324554.Google Scholar
  6. Bandalos, D. L., & Finney, S. J. (2009). Item parceling issues in structural equation modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques and in structural equation modeling (pp. 269–297). Mahwah, NJ: Erlbaum, 269–297.Google Scholar
  7. Baumert, J. & Kunter, M. (2013). The COACTIV Model of Teachers’ Professional Competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.). Cognitive activation in the mathematics classroom and professional competence of teachers. Results from the COACTIV project (pp. 49–63). New York: Springer. doi:10.1007/978-1-4614-5149-5.
  8. Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., & Tsai, Y.-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133–180. doi:10.3102/0002831209345157.CrossRefGoogle Scholar
  9. Berliner, D. C. (1989). Implications of studies of expertise in pedagogy for teacher education and evaluation. In J. Pfleiderer (Ed.), New directions for teacher assessment (Proceedings of the 1988 ETS Invitational Conference) (pp. 39–68). Princeton: Educational Testing Service.Google Scholar
  10. Berliner, D. C. (1994). The wonder of exemplary performances. In J. N. Mangieri & C. Collins Block (Eds.), Creating powerful thinking in teachers and students (pp. 161–186). Forth Worth, TX: Holt, Rinehard, & Winston.Google Scholar
  11. Berliner, D. C. (2001). Learning about and learning from expert teachers. International Journal of Educational Research, 35(5), 463–482. doi:10.1016/S0883-0355(02)00004-6.CrossRefGoogle Scholar
  12. Carter, K., Cushing, K., Sabers, D., Stein, P., & Berliner, D. (1988). Expert-novice differences in perceiving and processing visual classroom stimuli. Journal of Teacher Education, 39(3), 25–31. doi:10.1177/002248718803900306.CrossRefGoogle Scholar
  13. Carter, K., Sabers, D., Cushing, K., Pinnegar, S., & Berliner, D. (1987). Processing and using information about students: a study of expert, novice, and postulant teachers. Teaching and Teacher Education, 3(2), 147–157. doi:10.1016/0742-051X(87)90015-1.CrossRefGoogle Scholar
  14. Cohen, D. K., Raudenbusch, S. W., & Ball, D. L. (2003). Resources, instruction, and research. Educational Evaluation and Policy Analysis, 25(2), 119–142. doi:10.3102/01623737025002119.CrossRefGoogle Scholar
  15. Council, National Research (Ed.). (2000). How people learn: brain, mind, experience, and school. Washington: National Academy Press.Google Scholar
  16. Ericsson, K. A., Krampe, R Th, & Tesch-Romer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406.CrossRefGoogle Scholar
  17. Es, E. A., & Sherin, M. G. (2008). Mathematics teachers “learning to notice” in the context of a video club. Teaching and Teacher Education, 24(2), 244–276. doi:10.1016/j.tate.2006.11.005.CrossRefGoogle Scholar
  18. Fabrigar, L. R., Wegener, D. T., MacCallum, R. C. & Strahan, E. J. (1999). Evaluating the use of exploratory factor analysis in psychological research. Psychological Methods, 4(3), 272–299. http://dx.doi.org/10.1037/1082-989X.4.3.272 CrossRefGoogle Scholar
  19. Hill, H. C., & Ball, D. L. (2004). Learning mathematics for teaching: results from California’s Mathematics Professional Development Institutes. Journal for Research in Mathematics Education, 35(5), 330–351.CrossRefGoogle Scholar
  20. Hill, H. C., Blunk, M., Charalambous, C., Lewis, J., Phelps, G. C., Sleep, L., & Ball, D. L. (2008). Mathematical knowledge for teaching and the mathematical quality of instruction: an exploratory study. Cognition and Instruction, 26(4), 430–511. doi:10.1080/07370000802177235.CrossRefGoogle Scholar
  21. Hill, H. C., Rowan, B., & Ball, D. (2005). Effects of teachers mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42(2), 371–406. doi:10.3102/0002831204200237.CrossRefGoogle Scholar
  22. Hill, H., Schilling, S., & Ball, D. L. (2004). Developing measures of teacher’s mathematics knowledge for teaching. The Elementary School Journal, 105(1), 11–30. doi:10.1086/428763.CrossRefGoogle Scholar
  23. Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141–151. doi:10.1177/001316446002000116.CrossRefGoogle Scholar
  24. Kersting, N. (2008). Using video clips as item prompts to measure teachers’ knowledge of teaching mathematics. Educational and Psychological Measurement, 68(5), 845–861. doi:10.1177/0013164407313369.CrossRefGoogle Scholar
  25. Kersting, N. B., Givvin, K., Sotelo, F., & Stigler, J. W. (2010). Teacher’s analysis of classroom video predicts student learning of mathematics: further explorations of a novel measure of teacher knowledge. Journal of Teacher Education, 61(1–2), 172–181. doi:10.1177/0022487109347875.CrossRefGoogle Scholar
  26. Kersting, N. B., Givvin, K. B., Thompson, B., Santagata, R., & Stigler, J. (2012). Developing measures of usable knowledge: teachers’ analyses of mathematics classroom videos predict teaching quality and student learning. American Educational Research Journal, 49(3), 568–590. doi:10.3102/0002831212437853.CrossRefGoogle Scholar
  27. Kersting, N. B., Sherin, B., & Stigler, J. W. (2014). Automated scoring of teachers’ open-ended responses to video prompts: bringing the classroom video analysis (CVA) assessment to scale. Educational and Psychological Measurement, 74(6), 950–974. doi:10.1177/0013164407313369.CrossRefGoogle Scholar
  28. König, J., Blömeke, S., & Kaiser, G. (2015). Early career mathematics teachers general pedagogical knowledge and skills: do teacher education, teaching experience, and working conditions make a difference? International Journal of Science and Mathematics Education, 13(2), 331–350. doi:10.1007/s10763-015-9618-5.CrossRefGoogle Scholar
  29. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88. doi:10.1016/j.tate.2013.11.004.CrossRefGoogle Scholar
  30. Magnus, B. E. (2013). the influence of parceling on the implied factor structure of multidimensional item response data. (Master’s Thesis). Available from the ProQuest Dissertation and Theses database. (UMI No: 1545097).Google Scholar
  31. Reynolds, R. E., Sinatra, G. M., & Jetton, T. L. (1996). Views of Knowledge acquisition and representation: a continuum from experience centered to mind centered. Educational Psychologist, 31(2), 93–104.CrossRefGoogle Scholar
  32. Seidel, T., Blomberg, G., & Stürmer, K. (2010). OBSERVE -Validation of a video-based instrument assessing professional vision. Zeitschrift für Pädagogik, (Beiheft), 56, 296–306.Google Scholar
  33. Sherin, M. G., & Han, S. (2004). Teacher learning in the context of a video club. Teaching and Teacher Education, 20(2), 163–183. doi:10.1016/j.tate.2003.08.001.CrossRefGoogle Scholar
  34. Sherin, M. G., & van Es, E. A. (2005). Using video to support teachers’ ability to notice classroom interactions. Journal of Technology and Teacher Education 13(3), 475–491. ISSN: 1059-7069.Google Scholar
  35. Sherin, M. G., & van Es, E. A. (2009). Effects of video club participation on teachers’ professional vision. Journal of Teacher Education, 60(1), 20–37. doi:10.1177/0022487108328155.CrossRefGoogle Scholar
  36. Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4–14. http://www.jstor.org/stable/1175860.
  37. Shulman, L. (1987). Knowledge and teaching: foundations of the new reform. Harvard Educational Review, 57(1), 1–22.CrossRefGoogle Scholar
  38. Stürmer, K., König, K., & Seidel, T. (2013). Declarative knowledge and professional vision in teacher education: Effect of courses in teaching and learning. British Journal of Educational Psychology, 83(3), 467–483. doi:10.1111/j.2044-8279.2012.02075.xvan.CrossRefGoogle Scholar
  39. Stürmer, K., & Seidel, T. (2014). Modeling and measuring the structure of professional vision in preservice teachers. American Educational Research Journal, 51(4), 739–771. doi:10.3102/0002831214531321.CrossRefGoogle Scholar
  40. Yeh, C., & Santagata, R. (2015). Pre-service teachers’ learning to generate evidence-based hypotheses about the impact of mathematics teaching on learning. Journal of Teacher Education, 66(1), 21–34. doi:10.1177/0022487114549470.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2015

Authors and Affiliations

  • Nicole B. Kersting
    • 1
  • Taliesin Sutton
    • 1
  • Crystal Kalinec-Craig
    • 1
  • Kathleen Jablon Stoehr
    • 1
  • Saeideh Heshmati
    • 1
  • Guadalupe Lozano
    • 1
  • James W. Stigler
    • 2
  1. 1.University of ArizonaTucsonUSA
  2. 2.University of CaliforniaLos AngelesUSA

Personalised recommendations