ZDM

, Volume 48, Issue 1–2, pp 125–137 | Cite as

Epistemological beliefs of prospective preschool teachers and their relation to knowledge, perception, and planning abilities in the field of mathematics: a process model

  • Simone Dunekacke
  • Lars Jenßen
  • Katja Eilerts
  • Sigrid Blömeke
Original Article

Abstract

Teacher competence is a multi-dimensional construct that includes beliefs as well as knowledge. The present study investigated the structure of prospective preschool teachers’ mathematics-related beliefs and their relation to content knowledge and pedagogical content knowledge. In addition, prospective preschool teachers’ perception and planning skills were assessed as indicators of teacher performance. Questionnaires were used to measure beliefs, paper-and-pencil based achievement tests to measure knowledge, and a video-based test to measure perception and planning abilities. Confirmatory factor analyses revealed that prospective preschool teachers’ mathematics-related beliefs can be distinguished into a static, a process, and an application orientation. Structural equation modeling revealed that an application orientation and mathematics pedagogical content knowledge can predict the ability to perceive mathematical learning situations and to plan adequate actions. Conclusions for preschool teacher education are drawn from the results.

Keywords

Preschool teachers Teacher education Teacher knowledge Teacher beliefs Teaching skills Video-based testing 

References

  1. Baer, M., Dörr, G., Fraefel, U., Kocher, M., Küster, O., Larcher, S., et al. (2007). Werden angehende Lehrpersonen durch das Studium kompetenter?—Kompetenzaufbau und Standarderreichung in der berufswissenschaftlichen Ausbildung an drei Pädagogischen Hochschulen in der Schweiz und in Deutschland. Unterrichtswissenschaft, 35(1), 15–47.Google Scholar
  2. Ball, D. (1988). Research on teaching mathematics: making subject matter knowledge part of the equation. East Lansing: National Center for Research on Teacher Education.Google Scholar
  3. Ball, D., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 83–104). Westport: Ablex.Google Scholar
  4. Ball, D., & Bass, H. (2009). With an eye on the mathematical horizon: knowing mathematics for teaching to learners’ mathematical futures. In M. Neubrand (Ed.), Beiträge zum Mathematikunterricht 2009 (pp. 11–22). Münster: WTM.Google Scholar
  5. Benz, C. (2012). Attitudes of kindergarten educators about math. Journal für Mathematik-Didaktik, 33, 203–232.CrossRefGoogle Scholar
  6. Blomberg, G., Stürmer, K., & Seidel, T. (2011). How pre-service teachers observe teaching on video: effects of viewers’ teaching subjects and the subject of the video. Teaching and Teacher Education, 27, 1131–1140.CrossRefGoogle Scholar
  7. Blömeke, S., Gustafsson, J.-E., & Shavelson, R. (2014). Beyond dichotomies: competence viewed as a continuum. Zeitschrift für Psychologie (accepted).Google Scholar
  8. Blömeke, S., Hoth, J., Döhrmann, M., Busse, A., Kaiser, G. & König, J. (2015). Teacher change during induction: Profiles in the development of beginning primary teachers’ knowledge and beliefs and their relation to performance. International Journal of Science and Mathematics Education (accepted).Google Scholar
  9. Blömeke, S., Kaiser, G., & Lehmann, R. (2008). Professionelle Kompetenz angehender Lehrerinnen und Lehrer: Wissen, Überzeugungen und Lerngelegenheiten deutscher Mathematikstudierender und –referendare. Erste Ergebnisse zur Wirksamkeit der Lehrerausbildung. Münster: Waxmann.Google Scholar
  10. Blömeke, S., Suhl, U., & Döhrmann, M. (2012). Zusammenfügen was zusammengehört. Kompetenzprofile am Ende der Lehrerausbildung im internationalen Vergleich. Zeitschrift für Pädagogik, 58 (4), 422–440.Google Scholar
  11. Bromme, R. (2005). Thinking and knowing about knowledge: a plea for and critical remarks on psychological research programs on epistemological beliefs. In M. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign—grounding mathematics education (pp. 191–201). New York: Springer.Google Scholar
  12. Charlesworth, R., Hart, C. H., Burts, D. C., Thomason, R. H., Mosley, J., & Fleege, P. O. (1993). Measuring the developmental appropriateness of kindergarten teachers’ beliefs and practices. Early Childhood Research Quarterly, 8, 255–276.CrossRefGoogle Scholar
  13. Dunekacke, S., Jenßen, L., & Blömeke, S. (2015a). Effects of mathematics content knowledge on pre-school teachers’ performance: a video-based assessment of perception and planning abilities in informal learning situations. International Journal of Science and Mathematics Education (accepted).Google Scholar
  14. Dunekacke, S., Jenßen, L., & Blömeke, S. (2015b). Mathematikdidaktische Kompetenz von Erzieherinnen und Erziehern: Validierung des KomMa-Leistungstests durch die videogestützte Erhebung von Performanz. Zeitschrift für Pädagogik (accepted).Google Scholar
  15. Felbrich, A., Müller, C., & Blömeke, S. (2008). Epistemological beliefs concerning the nature of mathematics among teacher educators and teacher education students in mathematics. ZDM—The International Journal on Mathematics Education, 40, 763–776.CrossRefGoogle Scholar
  16. Fröhlich-Gildhoff, K., Nentwig-Gesemann, I., & Pietsch, S. (2011). Kompetenzorientierung in der Qualifizierung frühpädagogischer Fachkräfte. Eine Expertise der Weiterbildungsinitiative Frühpädagogische Fachkräfte (WiFF). München: Deutsches Jugendinsitut e.V.Google Scholar
  17. Ginsburg, H. P., & Ertle, B. (2008). Knowing the mathematics in early childhood mathematics. In O. N. Saracho & B. Spodek (Eds.), Contemporary perspectives on mathematics in early childhood education (pp. 45–66). Charlotte: Information AGE.Google Scholar
  18. Grigutsch, S., Raatz, U., & Törner, G. (1998). Einstellungen gegenüber Mathematik bei Mathematiklehrern. Journal für Mathematik-Didaktik, 19, 3–45.CrossRefGoogle Scholar
  19. Hasemann, K., & Gasteiger, H. (2014). Anfangsunterricht Mathematik. Berlin: Springer.CrossRefGoogle Scholar
  20. Hogrebe, N., Schulz, S., & Böttcher, W. (2012). Professionalisierung im Elementarbereich—Personalentwicklung im Spannungsfeld von Anspruch und Wirklichkeit. Soziale Passagen, 4, 247–261.CrossRefGoogle Scholar
  21. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.CrossRefGoogle Scholar
  22. Jenßen, L., Dunekacke, S. & Blömeke, S. (2015a). Qualitätssicherung in der Kompetenzforschung: Empfehlungen für den Nachweis von Validität in Testentwicklung und Veröffentlichungspraxis. Zeitschrift für Pädagogik (accepted).Google Scholar
  23. Jenßen, L., Dunekacke, S., Eid, M. & Blömeke, S. (2015b). The relationship of mathematical competence and mathematics anxiety—an application of latent state-trait theory. Zeitschrift für Psychologie, 223(1), 31–38.Google Scholar
  24. Jenßen, L., Dunekacke, S., Baack, W., Tengler, M., Koinzer, T., Schmude, C., Wedekind, H., Grassmann, M. & Blömeke, S. (2015c). KomMa: Mathematikbezogene Kompetenz von Erzieher/-innen: Theoretischer Rahmen, Strukturanalyse und Zusammenhang zu Ausbildungsinhalten.Google Scholar
  25. Joas, H. (1996). Die Kreativität des Handelns. Frankfurt: Suhrkamp.Google Scholar
  26. Kahan, J. A., Cooper, D. A., & Bethea, K. A. (2003). The role of mathematics teachers’ content knowledge in their teaching: a framework for research applied to a study of student teachers. Journal of Mathematics Teacher Education, 6, 223–252.CrossRefGoogle Scholar
  27. Kane, M. T. (1992). The assessment of professional competence. Evaluation and the Health Professions, 15(2), 163–182.CrossRefGoogle Scholar
  28. Kersting, N. (2008). Using video clips of mathematics classroom instruction as item prompts to measure teachers’ knowledge of teaching mathematics. Educational and Psychological Measurement, 68(5), 845–861.CrossRefGoogle Scholar
  29. König, J., Blömeke, S., Klein, P., Suhl, U., Busse, A., & Kaiser, G. (2014). Is teachers’ general pedagogical knowledge a premise for noticing and interpreting classroom situations? A video-based assessment approach. Teaching and Teacher Education, 38, 76–88.CrossRefGoogle Scholar
  30. Krajewski, K., & Schneider, W. (2009). Early development of quantity to number-word linkage as a precursor of mathematical school achievement and mathematical difficulties: findings from a four-year longitudinal study. Learning and Instruction, 19, 513–526.CrossRefGoogle Scholar
  31. Leder, G., Pehkonen, E., & Törner, G. (Eds.). (2002). Beliefs. A hidden variable in mathematics education. Dordrecht: Kluwer.Google Scholar
  32. Lee, J. (2010). Exploring Kindergarten teachers’ pedagogical content knowledge of mathematics. International Journal of Early Childhood, 47(1), 27–41.CrossRefGoogle Scholar
  33. Lee, J. S., & Ginsburg, H. P. (2007). What is appropriate mathematics education for four-year-olds? Prekindergarten teachers’ belief. Journal for Early Childhood Research, 5(1), 2–31.CrossRefGoogle Scholar
  34. Lee, J., Meadows, M., & Lee, J. O. (2003). What causes teachers to implement high quality mathematics education more frequently: focusing on teachers’ pedagogical content knowledge. Washington: ERIC.Google Scholar
  35. Little, T. D., Cunningham, W. A., Shahar, G., & Widaman, K. F. (2002). To parcel or not to parcel: exploring the question, weighing the merits. Structural Equation Modeling, 9, 151–173.CrossRefGoogle Scholar
  36. Muthén, L. K., & Muthén, B. O. (2007). Mplus user’s guide (5th ed.). Los Angeles: Muthén & Muthén.Google Scholar
  37. Nespor, J. (1987). The role of beliefs in the practice of teaching. Journal of Curriculum Studies, 19, 317–328.CrossRefGoogle Scholar
  38. Perrez, M., Huber, G. L., & Geißler, K. A. (2001). Psychologie der pädagogischen Interaktion. In A. Krapp & B. Weidenmann (Eds.), Pädagogische Psychologie. Ein Lehrbuch (pp. 358–413). 4. Vollständig überarbeitete Auflage. Weinheim: Beltz.Google Scholar
  39. Richardson, V. (1996). The role of attitudes and beliefs in learning to teach. In J. P. Sikula, T. J. Buttery, & E. Guyton (Eds.), Handbook of research on teacher education (pp. 102–119). Michigan: Macmillan.Google Scholar
  40. Sarama, J., & Clements, D. H. (2009). Early childhood mathematics education research. Learning trajectories for young children. New York: Routledge.Google Scholar
  41. Seo, K.-H., & Ginsburg, H. P. (2004). What is developmentally appropriate in early childhood mathematics education? Lessons from new research. In D. H. Clements, J. Sarama, & A.-M. DiBiase (Eds.), Engaging young children in mathematics: standards for early childhood mathematics education (pp. 91–104). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  42. Shulmann, L. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.CrossRefGoogle Scholar
  43. Star, J. R., & Strickland, S. K. (2008). Learning to observe: using video to improve preservice mathematics teachers’ ability to notice. Journal for Mathematics Teacher Education, 107–125.Google Scholar
  44. Stipek, D. J., & Byler, P. (1997). Early childhood teachers: do they practice what they preach? Early Childhood Research Quarterly, 12, 305–325.CrossRefGoogle Scholar
  45. Thiel, O. (2010). Teachers’ attitudes towards mathematics in early childhood education. European Early Childhood Education Research Journal, 18(1), 105–115.CrossRefGoogle Scholar
  46. van Es, E. A., & Scherin, M. G. (2006). Mathematics teachers “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.Google Scholar
  47. van Oers, B. (2009). Emergent mathematical thinking in the context of play. Educational Studies in Mathematics, 74(1), 23–37.CrossRefGoogle Scholar
  48. Warfield, J. (2001). Teaching Kindergarten children to solve word problems. Early Childhood Education Journal, 28, 161–167.CrossRefGoogle Scholar
  49. Weinert, F.E. (2001). Concept of competence: a conceptual classification. In D.S. Rychen, & L. Hersh Salganik (Eds.), Defining and selecting key competencies. Göttingen: Hogrefe.Google Scholar
  50. Widulle, W. (2009). Handlungsorientiert Lernen im Studium. Arbeitsbuch für soziale und pädagogische Berufe. Heidelberg: Springer.CrossRefGoogle Scholar
  51. Wirtz, M., & Caspar, F. (2002). Beurteilerübereinstimmung und Beurteilerreliabilität. Göttingen: Hogrefe.Google Scholar
  52. Wittmann, E. Ch. (2009). Mathematische Bildung. In L. Fried & S. Roux (Eds.), Pädagogik der frühen Kindheit. Handbuch und Nachschlagewerk (pp. 205–211). Berlin: Cornelsen.Google Scholar

Copyright information

© FIZ Karlsruhe 2015

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinBerlinGermany
  2. 2.Carl von Ossietzky Universität OldenburgOldenburgGermany
  3. 3.Centre for Educational Measurement at the University of Oslo (CEMO)OsloNorway

Personalised recommendations