, Volume 47, Issue 3, pp 435–449 | Cite as

Articulation of spatial and geometrical knowledge in problem solving with technology at primary school

Original Article


Our paper focuses on the relationship between spatial and geometrical knowledge in problem solving situations at primary school. We have created tasks that involve three different spaces: physical space, graphical space and geometrical space. We aim to study the specific role of graphical space as a bridge between the other two spaces using paper and pencil and digital technology. We resort to the idea of dimensional deconstruction to design the tasks and to characterize the geometrical reasoning in pupils’ problem solving processes. We organized a class-based intervention with 7-year-old pupils to experiment a spatial problem involving the use of a grid and Cabri Elem e-book.


Physical Space Digital Technology Spatial Knowledge Dynamic Geometry Geometrical Reasoning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. V. Martinez & A. Castro Superfine (Eds.), PME-NA Psychology of Mathematics Education North America Chapter (pp. 2–15). Chicago IL, USA.Google Scholar
  2. Bartolini Bussi, M., & Baccaglini-Franck, A. (2015). Geometry in early years: sowing seeds for a mathematical definition of squares and rectangles. ZDM Mathematics Education, 47(3) (this issue). doi: 10.1007/s11858-014-0636-5.
  3. Berthelot, R., & Salin, M.-H. (1993). L’enseignement de la géométrie à l’école primaire. Grand N, 53, 39–56.Google Scholar
  4. Bryant, P. (2009). Paper 5: Understanding space and its representation in mathematics. London: Nuffield Foundation.Google Scholar
  5. Clairaut, A. (1741). Élements de géométrie (Imprimerie et librairie classique de Jules Delalain). Paris.Google Scholar
  6. Clements, D. H., & Samara, J. (2009). Learning and Teaching Early Maths. The Learning Trajectories Approach. New York: Routledge.Google Scholar
  7. Coob, P., Confrey, J., diSessa, A., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.CrossRefGoogle Scholar
  8. Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de didactique et de sciences cognitives, 10, 5–53.Google Scholar
  9. Freundenthal, H. (1973). Mathematics as an Educational Task. Dordrecht, NL: D. Reidel.Google Scholar
  10. Hershkowitz, R., Parzysz, B., & Van Dormolen, J. (1996). Space and shape. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International Handbook on Mathematics Education (Vols. 1–2, Vol. 1) (pp. 161–204). Dordrecht: Kluwer Academic Publishers.Google Scholar
  11. Jackiw, N., & Sinclair, N. (2006). Dynamic geometry activity design for elementary school mathematics. In C. Hoyles, J.-B. Lagrange, S. Le Hung, & N. Sinclair (Eds.), ICMI Study 17 Technology Revisited (Vol. 2, pp. 236–245). Hanoi Vietnam.Google Scholar
  12. Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: Prototypicality and inclusion. ZDM Mathematics Education, 47(3) (this issue). doi: 10.1007/s11858-014-0658-z.
  13. Laborde, C. (2004). Come la geometria dinamica puo rinnovare i processi di mediazone delle conoscenze matematiche nella scuola primaria. In B. D’Amore & S. Sbaragli (Eds.), La didattica della matematica: una scienza per la scuola (pp. 19–28). Bologna.Google Scholar
  14. Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. Recherche En Didactique Des Mathématiques, 14(12), 165–210.Google Scholar
  15. Laborde, C., Kynigos, C., Hollebrands, K., Sträßer, R., Gutierrez, A., & Boero, P. (2006). Teaching and learning geometry with technology. Handbook of research on the psychology of mathematics education: Past, present and future (pp. 275–304). Rotterdam: Sense Publishers.Google Scholar
  16. Levenson, E., Tirosh, D., & Tsamir, P. (2011). Preschool geometry. Theory, research, and practical perspectives. Rotterdam: Sense Publisher.CrossRefGoogle Scholar
  17. Lurçat, L. (1976). L’enfant et l’espace, le rôle du corps. Paris: PUF.Google Scholar
  18. Mackrell, K., Maschietto, M., & Soury-Lavergne, S. (2013). The interaction between task design and technology design in creating tasks with Cabri Elem. In C. Margolinas (Ed.), ICMI study 22 Task design in mathematics education (pp. 81–90). Royaume-Uni: Oxford.Google Scholar
  19. Maschietto, M., Mithalal, J., Richard, P., & Swoboda, E. (2013). Introduction to the papers and posters of WG4: Geometrical thinking. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), CERME 8 (pp. 578–584). Ankara, Turquie: Middle East Technical University.Google Scholar
  20. Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the pascaline and Cabri Elem e-books in primary school mathematics. ZDM – The International Journal on Mathematics Education, 45(7), 959–971.CrossRefGoogle Scholar
  21. Mithalal, J. (2010). Déconstruction instrumentale et déconstruction dimensionnelle dans le contexte de la géométrie dynamique tridimensionnelle (Thèse de doctorat). Grenoble, France: Joseph Fourier.Google Scholar
  22. Parzysz, B. (1988). “Knowing” vs “seeing” Problem of the plane representation of space geometry figures. Educational Studies in Mathematics, 19, 79–92.CrossRefGoogle Scholar
  23. Perrin-Glorian, M.-J., Mathe, A.-C., & Leclercq, R. (2013). Comment peut-on penser la continuité de l’enseignement de la géométrie de 6 a 15 ans ? Repères-IREM, 90, 5–41.Google Scholar
  24. Piaget, J., & Inhelder, B. (1963). The child’s conception of space. London: Routledge.Google Scholar
  25. Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of practice: classroom-based interventions in mathematics education. ZDM – The International Journal on Mathematics Education, 45, 333–341.CrossRefGoogle Scholar
  26. Thom, J. S., & McGarvey, L. (2015). Living forth worlds through drawing: Children’s geometric reasonings. ZDM Mathematics Education, 47(3) (this issue).Google Scholar
  27. Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2015). Early-years teachers’ concept images and concept definitions: Triangles, circles, and cylinders. ZDM Mathematics Education, 47(3) (this issue). doi: 10.1007/s11858-014-0641-8.
  28. Van Hiele, P.-M. (1986). Structure and Insight: A Theory of Mathematics Education. Orlando, FL: Academic Press.Google Scholar
  29. Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2015

Authors and Affiliations

  1. 1.S2HEP Institut Français de l’EducationLyon Cedex 07France
  2. 2.Dipartimento di Educazione e Scienze UmaneUniversità di Modena e Reggio EmiliaReggio EmiliaItaly

Personalised recommendations