Skip to main content
Log in

Articulation of spatial and geometrical knowledge in problem solving with technology at primary school

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Our paper focuses on the relationship between spatial and geometrical knowledge in problem solving situations at primary school. We have created tasks that involve three different spaces: physical space, graphical space and geometrical space. We aim to study the specific role of graphical space as a bridge between the other two spaces using paper and pencil and digital technology. We resort to the idea of dimensional deconstruction to design the tasks and to characterize the geometrical reasoning in pupils’ problem solving processes. We organized a class-based intervention with 7-year-old pupils to experiment a spatial problem involving the use of a grid and Cabri Elem e-book.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Balacheff, N. (2013). cK¢, a model to reason on learners’ conceptions. In M. V. Martinez & A. Castro Superfine (Eds.), PME-NA Psychology of Mathematics Education North America Chapter (pp. 2–15). Chicago IL, USA.

  • Bartolini Bussi, M., & Baccaglini-Franck, A. (2015). Geometry in early years: sowing seeds for a mathematical definition of squares and rectangles. ZDM Mathematics Education, 47(3) (this issue). doi:10.1007/s11858-014-0636-5.

  • Berthelot, R., & Salin, M.-H. (1993). L’enseignement de la géométrie à l’école primaire. Grand N, 53, 39–56.

    Google Scholar 

  • Bryant, P. (2009). Paper 5: Understanding space and its representation in mathematics. London: Nuffield Foundation.

    Google Scholar 

  • Clairaut, A. (1741). Élements de géométrie (Imprimerie et librairie classique de Jules Delalain). Paris.

  • Clements, D. H., & Samara, J. (2009). Learning and Teaching Early Maths. The Learning Trajectories Approach. New York: Routledge.

    Google Scholar 

  • Coob, P., Confrey, J., diSessa, A., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie: développement de la visualisation, différenciation des raisonnements et coordination de leurs fonctionnements. Annales de didactique et de sciences cognitives, 10, 5–53.

    Google Scholar 

  • Freundenthal, H. (1973). Mathematics as an Educational Task. Dordrecht, NL: D. Reidel.

    Google Scholar 

  • Hershkowitz, R., Parzysz, B., & Van Dormolen, J. (1996). Space and shape. In A. J. Bishop, K. Clements, C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International Handbook on Mathematics Education (Vols. 1–2, Vol. 1) (pp. 161–204). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Jackiw, N., & Sinclair, N. (2006). Dynamic geometry activity design for elementary school mathematics. In C. Hoyles, J.-B. Lagrange, S. Le Hung, & N. Sinclair (Eds.), ICMI Study 17 Technology Revisited (Vol. 2, pp. 236–245). Hanoi Vietnam.

  • Kaur, H. (2015). Two aspects of young children’s thinking about different types of dynamic triangles: Prototypicality and inclusion. ZDM Mathematics Education, 47(3) (this issue). doi:10.1007/s11858-014-0658-z.

  • Laborde, C. (2004). Come la geometria dinamica puo rinnovare i processi di mediazone delle conoscenze matematiche nella scuola primaria. In B. D’Amore & S. Sbaragli (Eds.), La didattica della matematica: una scienza per la scuola (pp. 19–28). Bologna.

  • Laborde, C., & Capponi, B. (1994). Cabri-géomètre constituant d’un milieu pour l’apprentissage de la notion de figure géométrique. Recherche En Didactique Des Mathématiques, 14(12), 165–210.

    Google Scholar 

  • Laborde, C., Kynigos, C., Hollebrands, K., Sträßer, R., Gutierrez, A., & Boero, P. (2006). Teaching and learning geometry with technology. Handbook of research on the psychology of mathematics education: Past, present and future (pp. 275–304). Rotterdam: Sense Publishers.

    Google Scholar 

  • Levenson, E., Tirosh, D., & Tsamir, P. (2011). Preschool geometry. Theory, research, and practical perspectives. Rotterdam: Sense Publisher.

    Book  Google Scholar 

  • Lurçat, L. (1976). L’enfant et l’espace, le rôle du corps. Paris: PUF.

    Google Scholar 

  • Mackrell, K., Maschietto, M., & Soury-Lavergne, S. (2013). The interaction between task design and technology design in creating tasks with Cabri Elem. In C. Margolinas (Ed.), ICMI study 22 Task design in mathematics education (pp. 81–90). Royaume-Uni: Oxford.

    Google Scholar 

  • Maschietto, M., Mithalal, J., Richard, P., & Swoboda, E. (2013). Introduction to the papers and posters of WG4: Geometrical thinking. In B. Ubuz, C. Haser, & M. A. Mariotti (Eds.), CERME 8 (pp. 578–584). Ankara, Turquie: Middle East Technical University.

    Google Scholar 

  • Maschietto, M., & Soury-Lavergne, S. (2013). Designing a duo of material and digital artifacts: the pascaline and Cabri Elem e-books in primary school mathematics. ZDM – The International Journal on Mathematics Education, 45(7), 959–971.

    Article  Google Scholar 

  • Mithalal, J. (2010). Déconstruction instrumentale et déconstruction dimensionnelle dans le contexte de la géométrie dynamique tridimensionnelle (Thèse de doctorat). Grenoble, France: Joseph Fourier.

    Google Scholar 

  • Parzysz, B. (1988). “Knowing” vs “seeing” Problem of the plane representation of space geometry figures. Educational Studies in Mathematics, 19, 79–92.

    Article  Google Scholar 

  • Perrin-Glorian, M.-J., Mathe, A.-C., & Leclercq, R. (2013). Comment peut-on penser la continuité de l’enseignement de la géométrie de 6 a 15 ans ? Repères-IREM, 90, 5–41.

    Google Scholar 

  • Piaget, J., & Inhelder, B. (1963). The child’s conception of space. London: Routledge.

    Google Scholar 

  • Stylianides, A. J., & Stylianides, G. J. (2013). Seeking research-grounded solutions to problems of practice: classroom-based interventions in mathematics education. ZDM – The International Journal on Mathematics Education, 45, 333–341.

    Article  Google Scholar 

  • Thom, J. S., & McGarvey, L. (2015). Living forth worlds through drawing: Children’s geometric reasonings. ZDM Mathematics Education, 47(3) (this issue).

  • Tsamir, P., Tirosh, D., Levenson, E., Barkai, R., & Tabach, M. (2015). Early-years teachers’ concept images and concept definitions: Triangles, circles, and cylinders. ZDM Mathematics Education, 47(3) (this issue). doi:10.1007/s11858-014-0641-8.

  • Van Hiele, P.-M. (1986). Structure and Insight: A Theory of Mathematics Education. Orlando, FL: Academic Press.

    Google Scholar 

  • Vergnaud, G. (2009). The theory of conceptual fields. Human Development, 52, 83–94.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Soury-Lavergne.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soury-Lavergne, S., Maschietto, M. Articulation of spatial and geometrical knowledge in problem solving with technology at primary school. ZDM Mathematics Education 47, 435–449 (2015). https://doi.org/10.1007/s11858-015-0694-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-015-0694-3

Keywords

Navigation