, Volume 45, Issue 6, pp 811–822 | Cite as

Research evidence on the benefits of IBL

  • Regina BruderEmail author
  • Anne Prescott
Original Article


This paper describes the current state of knowledge of empirical studies in the broader sense dealing with inquiry-based learning (IBL) of mathematics and science subjects in schools and universities. The advantages, disadvantages, and effects on relevant outcomes that students can achieve in IBL classrooms are discussed from the aspect of further developing teaching quality. First, the conceptual aspects of IBL are considered briefly to show the background of the studies and the results are categorized. Secondly, references are given with explanations or possible reasons for the results that are not always consistent and, at times, even contradictory. Finally, conclusions from current studies including this overview are drawn with respect to open scientific questions.


Professional Development Content Knowledge Instructional Design Learning Style English Language Learner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amaral, O., Garrison, L., & Klentschy, M. (2002). Helping English learners increase achievement through inquiry-based science instruction. Bilingual Research Journal, 26(2), 213–239.CrossRefGoogle Scholar
  2. Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry. Journal of Science Teacher Education, 13(1), 1–12.CrossRefGoogle Scholar
  3. Artigue, M., & Blomhøj, M. (2013). Examples of inquiry-based activities with reference to different theoretical frameworks in mathematics education research. ZDMThe International Journal on Mathematics Education, 45(6) (this issue). doi: 10.1007/s11858-013-0506-6.
  4. Asmussen, S. (2009). Der Einfluss der MINIPHÄNOMENTA auf die methodisch-formalen naturwissenschaftlichen Fähigkeiten von Schülerinnen und Schülern der Primarstufe. Skizze einer Interventionsstudie im Kontext eines naturwissenschaftlichen Bildungsprojekts. Widerstreit Sachunterricht, 13. (Accessed 27 July 2012).
  5. Barron, B., & Darling-Hammond, L. (2008). Teaching for meaningful learning: A review of research on inquiry-based and cooperative learning. (Accessed Sep 2013).
  6. Beinbrech, C. (2003). Problemlösen im Sachunterricht der Grundschule. Eine empirische Studie zur Gestaltung von Lehr-Lernumgebungen im Hinblick auf die Förderung des Problemlöseverhaltens im Sachunterricht. (Accessed 12 Sep 2013).
  7. Boaler, J. (1998). Open and closed mathematics: Student experiences and understandings. Journal for Research in Mathematics Education, 29(1), 41–62.CrossRefGoogle Scholar
  8. Brown, A., & Campione, J. (1994). Guided discovery in a community of learners. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive theory and classroom practice (pp. 229–270). Cambridge, MA: MIT Press.Google Scholar
  9. Chan, C. M. E. (2006). Engaging students in open-ended mathematics problem tasks—a sharing on teachers’ production and classroom experience (Primary). Paper presented at ICMI-EARCOME3. (Accessed 12 Sep 2013).
  10. Chi, M. T. H. (2000). Self-explaining expository texts: The dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in instructional psychology (pp.161–238). Mahwah, NJ: Erlbaum.Google Scholar
  11. Colburn, A. (2000). An inquiry primer. Science Scope, 3, 42–44.Google Scholar
  12. Cronbach, L. J. (1981). Die Logik von Experimenten über Entdeckung. In H. Neber (Ed.), Entdeckendes Lernen (pp. 153–165). Weinheim: Beltz.Google Scholar
  13. Diezmann, C. M., Watters, J. J., & English, L. D. (2001). Implementing mathematical investigations with young children. In J. Bobis, B. Perry & M. Mitchelmore (Eds.), Numeracy and beyond. Proceedings 24th Annual Conference of the Mathematics Education Research Group of Australasia (pp. 170–177). Sydney: MERGA.Google Scholar
  14. Egan, D. E., & Greeno, J. E. (1981). Der Erwerb kognitiver Strukturen durch Entdeckendes- und Regellernen. In H. Neber (Ed.), Entdeckendes Lernen (pp. 190–207). Weinheim: Beltz.Google Scholar
  15. Ergül, R., Simsekli, Y., Calis, S., Özdilek, Z., Göcmencelebi, S., & Sanli, M. (2011). The effects of inquiry-based science teaching on elementary school students’ science process skills and science attitudes. Bulgarien Journal of Science and Education Policy (BJSEP), 5(1), 48–68.Google Scholar
  16. Fradd, S. H., Lee, O., Suutman, F. X., & Saxton, M. K. (2002). Promoting science literacy with English learners through instructional materials development: A case study. Bilingual Research Journal, 25(4), 479–501.Google Scholar
  17. Gallagher, S., Stepien, W., & Rosenthal, H. (1992). The effects of problem-based learning on problem solving. Gifted Child Quarterly, 36(4), 195–200.CrossRefGoogle Scholar
  18. Germann, P. J., Haskins, S., & Auls, S. (1996). Analysis of nine high school biology laboratory manuals: Promoting science inquiry. Journal of Research in Science Teaching, 33(5), 337–357.CrossRefGoogle Scholar
  19. Hartinger, A. (2001). Entdeckendes Lernen. In W. Einsiedler, M. Götz, H. Hacker, J. Kahlert, R. W. Keck, & U. Sandfuchs (Eds.), Handbuch Grundschulpädagogik und Grundschuldidaktik (pp. 330–335). Bad Heilbrunn: Julius Klinkhardt.Google Scholar
  20. Hattie, J. A. C. (2009). Visible learning. A synthesis of over 800 meta-analyses relating to achievement. London and New York: Routledge.Google Scholar
  21. Hermann, G. (1981). Lernen durch Entdeckung: Eine kritische Erörterung von Forschungsarbeiten. In H. Neber (Ed.), Entdeckendes Lernen (pp. 166–189). Weinheim: Beltz.Google Scholar
  22. Kahle, J. B., Meece, J., & Scantlebury, K. (2000). Urban African-American middle school science students: Does standards-based teaching make a difference? Journal of Research in Science Teaching, 37(9), 1019–1041.CrossRefGoogle Scholar
  23. Kahn, P., & O’Rourke, K. (2005). Understanding enquiry-based learning. In T. Barret, I. Mac Labhrainn, & H. Fallon (Eds.), Handbook of enquiry & problem based learning. Galway: CELT.Google Scholar
  24. Kirschner, A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.CrossRefGoogle Scholar
  25. Klahr, D., & Nigam, M. (2004). The equivalence of learning paths in early science instruction: Effects of direct instruction and discovery learning. Psychological Science, 15(10), 661–667.CrossRefGoogle Scholar
  26. Klauer, K., & Leutner, D. (2007). Lehren und Lernen. Einführung in die Instruktionspsychologie. Weinheim: Beltz.Google Scholar
  27. Kremer, A., & Schlüter, K. (2006). Analyse von Gruppensituationen beim forschend-entdeckenden Lernen. Ergebnisse einer ersten Studie. Erkenntnisweg Biologiedidaktik, 5, 145–156.Google Scholar
  28. Leikin, R., & Rota, S. (2006). Learning through teaching: A case study on the development of a mathematics teacher’s proficiency in managing an inquiry-based classroom. Mathematics Education Research Journal, 18(3), 44–68.CrossRefGoogle Scholar
  29. Lind, G., Friege, G., Kleinschmidt, L., & Sandmann, A. (2004). Beispiellernen und Problemlösen. Zeitschrift für Didaktik der Naturwissenschaften, 10, 29–49.Google Scholar
  30. Maaß, K. (2011). Report about the survey on inquiry-based learning and teaching in the European partner countries. EU-Project Information: PRIMAS. (Accessed 12 Sep 2013).
  31. Maaß, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDMThe International Journal on Mathematics Education, 45(6) (this issue). doi: 10.1007/s11858-013-0505-7.
  32. Marx, R. W., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E., Geier, R., et al. (2004). Inquiry-based science in the middle grades: Assessment of learning in urban systemic reform. Journal of Research in Science Teaching, 41, 1063–1080.CrossRefGoogle Scholar
  33. McCarty, T. L., Hadley Lynch, R., Wallace, S., & Benally, A. (1991). Classroom inquiry and Navajo learning styles: A call for reassessment. Anthropology and Education Quarterly, 22(1), 42–59.CrossRefGoogle Scholar
  34. Meyer, D. K., Turner, J. C., & Spencer, C. A. (1997). Challenge in a mathematics classroom: Students’ motivation and strategies in project-based learning. Elementary School Journal, 97, 501–521.CrossRefGoogle Scholar
  35. Moreno, R. (2004). Decreasing cognitive load in novice students: Effects of explanatory versus corrective feedback in discovery-based multimedia. Instructional Science, 32, 99–113.CrossRefGoogle Scholar
  36. Neber, H. (2001). Entdeckendes Lernen. In D. Rost (Ed.), Handwörterbuch Pädagogische Psychologie (pp. 115–121). Weinheim: Beltz.Google Scholar
  37. Nelson, T. H., & Moscovici, H. (1998). Shifting from activitymania to inquiry. Science and Children, 35(4), 14–17.Google Scholar
  38. Newmann, F. M., Marks, H. M., & Gamoran, A. (1995). Authentic pedagogy: Standards that boost student performance. Issues in Restructuring Schools, 8, 1–4.Google Scholar
  39. Newmann, F. M., Marks, H. M., & Gamoran, A. (1996). Authentic pedagogy and student performance. American Journal of Education, 104(4), 280–312.CrossRefGoogle Scholar
  40. Nußbaum, A., & Leutner, D. (1986). Entdeckendes Lernen von Aufgabenlösungsregeln unter verschiedenen Anforderungsbedingungen. Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie, 18, 153–164.Google Scholar
  41. Palmer, S. (2002). Enquiry-based learning can maximise a student’s potential. Psychologie Learning and Teaching, 2(2), 82–86.CrossRefGoogle Scholar
  42. Penuel, W. R., Means, B., & Simkins, M. B. (2000). The multimedia challenge. Educational Leadership, 58, 34–38.Google Scholar
  43. Perso, T. (2003). Improving Aboriginal numeracy. Perth: MASTEC.Google Scholar
  44. Phelan, A. M. (2005). A fall from (someone else’s) certainty: Recovering practical wisdom in teacher education. Canadian Journal of Education/Revue Canadienne de l’éducation, 28(3), 339–358.CrossRefGoogle Scholar
  45. Puntambekar, S., Stylianou, A., & Goldstein, J. (2007). Comparing classroom enactments of an inquiry curriculum: Lessons learned from two teachers. Journal of the Learning Sciences, 16(1), 81–130.Google Scholar
  46. Rains, F. V., Archibald, J. A., & Deyhle, D. (2000). Introduction: Through our eyes and in our own words. International Journal of Qualitative Studies in Education, 13(4), 337–342.CrossRefGoogle Scholar
  47. Roy, M., & Chi, M. T. H. (2005). Self-explanation in a multi-media context. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 271–286). Cambridge, MA: Cambridge University Press.CrossRefGoogle Scholar
  48. Scruggs, T. E., & Mastropieri, M. A. (1993). Reading versus doing: The relative effects of textbook based and inquiry-oriented approaches to science learning in special education classrooms. Journal of Special Education, 27(1), 1–15.CrossRefGoogle Scholar
  49. Stepien, W. J., Gallagher, S. A., & Workman, D. (1993). Problem-based learning for traditional and interdisciplinary classrooms. Journal for the Education of the Gifted, 16(4), 338–345.Google Scholar
  50. Sweller, J., Mawer, R., & Howe, W. (1982). The consequences of history-cued and means-ends strategies in problems solving. American Journal of Psychology, 95, 455–484.CrossRefGoogle Scholar
  51. Tafoya, E., Sunal, D., & Knecht, P. (1980). Assessing inquiry potential: A tool for curriculum decision makers. School Science and Mathematics, 80, 43–48.CrossRefGoogle Scholar
  52. Thomas, J. W. (2000). A review of research on project-based learning. (Accessed 12 Sep 2013).
  53. Winch, W. A. (1913). Inductive versus deductive methods of teaching. Baltimore: Warwick and York.Google Scholar

Copyright information

© FIZ Karlsruhe 2013

Authors and Affiliations

  1. 1.Technische UniversitaetDarmstadtGermany
  2. 2.University of TechnologySydneyAustralia

Personalised recommendations