Implementation of inquiry-based learning in day-to-day teaching: a synthesis

Abstract

This synthesis is designed to provide insight into the most important issues involved in a large-scale implementation of inquiry-based learning (IBL). We will first turn to IBL itself by reflecting on (1) the definition of IBL and (2) examining the current state of the art of its implementation. Afterwards, we will move on to the implementation of IBL and look at its dissemination through resources, professional development, and the involvement of the context. Based on these theoretical reflections, we will develop a conceptual framework for the analysis of dissemination activities before briefly analyzing four exemplary projects. The aim of our analysis is to reflect on the various implementation strategies and raise awareness of the different ways of using and combining them. This synthesis will end with considerations about the framework and conclusions regarding needed future actions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adler, J., & Jaworksi, B. (2009). Public writing in the field of mathematics teacher education. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics—The 15th ICMI study (pp. 249–254). New York: Springer.

    Google Scholar 

  2. Alfieri, L., Brooks, P., Aldrich, N., & Tenenbaum, H. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18.

    Google Scholar 

  3. Altrichter, H., Feldman, A., Posch, P., & Somekh, B. (2008). Teachers investigate their work. An introduction to action research across the professions (2nd ed.). London: Routledge.

    Google Scholar 

  4. Artigue, M., & Blomhøj, M. (2013). Conceptualising inquiry-based education in mathematics. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  5. Baistow, K. (2000). Cross-national research: what can we learn from inter-country comparisons? Social Work in Europe, 7(3), 8–13.

    Google Scholar 

  6. Ball, D. L., & Even, R. (2009). Strengthening practice in and research on the professional education. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics—The 15th ICMI Study (pp. 255–260). New York: Springer.

    Google Scholar 

  7. Baumert, J., Kunter, M., Brunner, M., Krauss, S., Blum, W., & Neubrand, M. (2004). Mathematikunterricht aus Sicht der PISA-Schülerinnen und -Schüler und ihrer Lehrkräfte. In Deutsches PISA-Konsortium (Ed.), PISA 2003Der Bildungsstand der Jugendlichen in DeutschlandErgebnisse des zweiten internationalen Vergleichs (pp. 314–354). Opladen: Leske + Budrich.

  8. Begg, A., Davis, B., & Bramald, R. (2003). Obstacles to the dissemination of mathematics education research. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 593–634). Dordrecht: Kluwer.

    Google Scholar 

  9. Bishop, K., & Denleg, P. (2006). Science learning centres and governmental policy for continuing professional development (CPD) in England. Journal of In-service Education, 32(1), 85–102.

    Article  Google Scholar 

  10. Boaler, J. (2008). Bridging the gap between research and practice: international examples of success. In M. Menghini, F. Furinghetti, L. Giarcardi, & F. Arzarella (Eds.), The first century of the International Commission on Mathematics Instruction (19082008): Reflecting and shaping the world of mathematics education. Roma: Instituto della Enciclopedia Italiana foundata da Giovanni Treccani.

  11. Bruder, R., & Prescott, A. (2013). Research evidence on the benefits of IBL. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  12. Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: towards a more useful influential and better-funded enterprise. Educational Researcher, 32(9), 3–14.

    Article  Google Scholar 

  13. Chin, E.-T. & Lin, F.-L. (2013). A survey of the practice of a large scale implementation of inquiry-based Mathematics Teaching - from Taiwan's perspective. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  14. Cobb, P., & Jackson, K. (2012). Analyzing educational policies: A learning design perspective. The Journal of the Learning Sciences, 21, 487–521.

    Article  Google Scholar 

  15. Cobb, P., Qing, Z., & Dean, C. (2009). Conducting design experiments to support teachers’ learning: A reflection from the field. Journal of the Learning Sciences, 18(2), 165–199.

    Article  Google Scholar 

  16. Dalton, J. H., Elias, M. J., & Wandersman, A. (2007). Community psychology: Linking individuals and communities. Belmont: Thomson-Wadsworth.

    Google Scholar 

  17. Dorier, J. & Garcia, F.J. (2013). Challenges and opportunities for the implementation of inquiry-based learning in day-to-day teaching. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  18. Edelson, D. (2006). What we learn when we engage in design: implications for assessing design research. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 100–106). Oxford: Routledge Chapman & Hall.

  19. Engeln, K., Euler, M., & Maaß, K. (2013). Inquiry-based learning in mathematics and science: a comparative baseline study of teachers’ beliefs and practices across 12 European countries. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  20. Gräsel, C., & Parchmann, I. (2004). Implementationsforschung–oder der steinige Weg, Unterricht zu verändern. Unterrichtswissenschaft, 32(3), 196–214.

    Google Scholar 

  21. Gravemeijer, K., & Cobb, P. (2006). Design research from a learners’ perspective. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). Oxford: Routledge Chapman & Hall.

  22. Gueudet, G., Pepin, B., & Trouche, L. (Eds.). (2012). From texts to ‘lived’ resources. New York: Springer.

    Google Scholar 

  23. Gueudet, G., Pepin, B., & Trouche, L. (2013). Textbooks’ design and digital resources. In C. Margolinas (Ed.), Task design in mathematics education. Proceedings of ICMI Study 22 (Vol. 1, pp. 327–337). Oxford.

  24. Gunnarsdottir, G. H., & Palsdottir, G. (2010). The implementation of the intended curriculum in teaching materials: authors’ perspective. In B. Sriraman, C. Bergsten, S. Goodchild, G. Palsdottir, B. Dahl, & L. Haapasalo (Eds.), The first sourcebook on Nordic research in mathematics education (pp. 539–549). Greenwich: IAP Information Age Publishing.

    Google Scholar 

  25. Hart, L. C. (2002). A four-year follow-up study of teachers beliefs after participating in a teacher enhancement project. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 161–176). Dordrecht/Boston/London: Kluwer.

    Google Scholar 

  26. Joubert, M., & Sutherland, R. (2009). A perspective on the literature: CPC for teachers of mathematics. London: National Centre for Excellence in the Teaching of Mathematics.

    Google Scholar 

  27. Kelly, A. (2006). Quality criteria for design research: evidence and commitments. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 107–118). Oxford: Routledge Chapman & Hall.

  28. Krainer, K. (1998). Some considerations on problems and perspectives of mathematics teacher in-service education. In C. Alsina, J. M. Alvarez, B. Hodgson, C. Laborde, & A. Perez (Eds.), The 8th International Congress on Mathematical Education (ICME 8). Selected Lectures (pp. 303–321). Sevilla: S.A.E.M. Thales.

  29. Krainer, K. (2012). Education of mathematics teacher educators. Encyclopedia of Mathematics Education. Heidelberg: Springer.

    Google Scholar 

  30. Krainer, K., & Zehetmeier, S. (2013). Inquiry-based learning for students, teachers, researchers, and representatives of educational administration and policy. Reflections on a nation-wide initiative fostering educational innovations. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  31. Lee, M. M., Chauvot, J., Plankis, B., Vowell, J., & Culpepper, S. (2011). Integrating to learn and learning to integrate: a case study of an online master’s program on science–mathematics integration for middle school teachers. Internet and Higher Education, 14, 191–200.

    Article  Google Scholar 

  32. Linn, M. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727–758.

    Article  Google Scholar 

  33. Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner – Wann gelingt der Rollen-tausch? Merkmale und Wirkungen wirksamer Lehrerfortbildungen. Schulpädagogik heute, 3(5), 1–17.

    Google Scholar 

  34. Maaß, K. (2009). What are teachers’ beliefs about effective mathematics teaching? In J. Cai, G. Kaiser, B. Perry, & N.-Y. Wong (Eds.), Effective mathematics teaching from teachers’ perspectives: National and cross-national studies (pp. 141–162). Rotterdam: Sense Publishers.

    Google Scholar 

  35. Maaß, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  36. Maaß, K., Garcia, F. J., Mousoulides, N., & Wake, G. (2013). Designing interdisciplinary tasks in an international design community. In C. Margolinas (Ed.), Task design in mathematics education. Proceedings of ICMI Study 22 (Vol. 1, pp. 369–378). Oxford.

  37. Manouchehri, A., & Goodman, T. (2000). Implementing mathematics reform: the challenge within. Educational Studies in Mathematics, 42, 1–34.

    Article  Google Scholar 

  38. Matos, J. F., Powell, A., & Sztajn, P. (2009). Mathematics teachers’ professional development: processes of learning in and from practice. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics (pp. 167–184). New York: Springer.

    Google Scholar 

  39. McDuffie, A. M., & Mather, M. (2006). Reification of instructional materials as part of the process of developing problem-based practices in mathematics education. Teachers and Teaching: theory and practice, 12, 435–459.

    Article  Google Scholar 

  40. McKenney, S., & Reeves, T. (2012). Conducting educational design research. London/New York: Routledge, Taylor & Francis.

    Google Scholar 

  41. Minner, D., Levy, A., & Century, J. (2010). Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.

    Article  Google Scholar 

  42. Mischo, C., & Maaß, K. (2013). The effect of teacher beliefs on student competence in mathematical modeling—an intervention study. Journal of Education and Training Studies, 1(1), 19–38.

    Article  Google Scholar 

  43. Mousoulides, N. (2013). Facilitating parental engagement in school mathematics and science through inquiry-based learning: an examination of teachers’ and parents’ beliefs. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  44. Müller, U. (2003). Weiterbildung der Weiterbildner (Vol. 17). Hamburg: Dr. Kovac.

  45. Müller, F. H., Andreitz, I., Krainer, K., & Mayr, J. (2011). Effects of a research-based learning approach in teacher professional development. In Y. Li & G. Kaiser (Eds.), Expertise in mathematics instruction: An international perspective (pp. 131–149). New York: Springer.

    Google Scholar 

  46. Nastasi, B. K., Varjas, K., Schensul, S. L., Silva, K. T., Schensul, J. J., & Ratnayake, P. (1998). The participatory intervention model: a framework for conceptualizing and promoting intervention acceptability. School Psychology Quarterly, 15(2), 207–232.

    Article  Google Scholar 

  47. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.

    Google Scholar 

  48. National Research Council (2000). Inquiry and the National Science Education Standards. A guide for teaching and learning. Washington, DC: National Academy Press.

  49. Nieveen, N. (2007). Formative evaluation in educational design research. In T. Plomp & N. Nieveen (Eds.), An introduction in educational design research (pp. 89–102). Enschede: SLO, Netherlands Institute for Curriculum Development.

  50. OECD. (1998). Staying ahead: In-service training and teacher professional development. Paris: OECD.

    Google Scholar 

  51. OECD. (2009). Creating effective teaching and learning environments: First results from TALIS. http://www.oecd.org/dataoecd/17/51/43023606.pdf. Accessed 25 July 2013.

  52. Piaget, J. (1980). The psychogenesis of knowledge and its epistemological significance. In: M. Piattelli-Palmarini (Ed.), Language and learning (pp. 23–54). Cambridge, MA: Harvard University Press.

  53. Ponte, J. P. (2008). Research and practice: bridging the gap or changing the focus? In M. Menghini, F. Furinghetti, L. Giarcardi, & F. Arzarella (Eds.), The first century of the International Commission on Mathematics Instruction. Reflecting and shaping the world of mathematics education (pp. 1908–2008). Roma: Instituto della Enciclopedia Italiana foundata da Giovanni Treccani.

    Google Scholar 

  54. Ponte, J. P., Matos, J. F., Guimaraes, H. M., Leal, L. C., & Canavarro, A. P. (1994). Teachers’ and students’ views and attitudes towards a new mathematics curriculum: a case study. Educational Studies in Mathematics, 26, 347–365.

    Article  Google Scholar 

  55. Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teachers’ learning? Educational Researcher, 29(1), 4–15.

    Article  Google Scholar 

  56. Robert, A. (2009). Learning in and from practice: comments and reflections. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics (pp. 227–230). New York: Springer.

    Google Scholar 

  57. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels: European Commission.

    Google Scholar 

  58. Ross, J. A., McDougall, D., Hogaboam-Gray, A., & LeSage, A. (2003). A survey measuring elementary teachers’ implementation of standards-based mathematics teaching. Journal for Research in Mathematics Education, 34(4), 344–363.

    Article  Google Scholar 

  59. Schaumburg, H., Prasse, D., & Blömeke, S. (2009). Implementation von Innovation in der Schule. In S. Blömeke, T. Bohl, L. Haag, Lang-Wojtasik, & W. Sacher (Eds.), Handbuch Schule. Bad Heilbrunn: Julius Klinkhardt.

  60. Schoen, H., Cegulla, K., Finn, K., & Fi, C. (2003). Teacher variables that relate to student achievement when using a standards-based curriculum. Journal for Research in Mathematics Education, 34(3), 228–259.

    Article  Google Scholar 

  61. Schoenfeld, A. & Kilpatrick, J. (2013). A U.S. perspective on the implementation of inquiry-based learning in Mathematics. ZDM - The International Journal on Mathematics Education, 45(6) (this volume).

  62. Stein, M., Smith, M., Henningsen, M., & Silver, E. (2000). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press.

    Google Scholar 

  63. Stillman, G. (2013). Implementation of IBL in Europe from an Australasian perspective. ZDM - The International Journal on Mathematics Education, 45(6) (this volume).

  64. Swan, M. (2006). Collaborative learning in mathematics: a challenge to our beliefs and practices. London: National Institute for Advanced and Continuing Education (NIACE) for the National Research and Development Centre for Adult Literacy and Numeracy (NRDC).

    Google Scholar 

  65. Takahashi, A., & Yoshida, M. (2004). Ideas for establishing lesson-study communities. Teaching Children Mathematics, 10(9), 436–443.

    Google Scholar 

  66. Thompson, M., & Wiliam, D. (2008). Tight but loose: a conceptual framework for scaling up school reforms. In C. Wylie (Ed.), Tight but loose: Scaling up teacher professional development in diverse contexts (pp. 1–44). Princeton: Educational Testing Service.

    Google Scholar 

  67. Tirosh, D., & Graeber, A. O. (2003). Challenging and changing mathematics teaching practices. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 643–688). Dordrecht: Kluwer.

    Google Scholar 

  68. van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Introducing educational design. In J. van den Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (pp. 3–7). Oxford: Routledge Chapman & Hall.

  69. Wake, G., & Burkhardt, H. (2013). Understanding the European policy landscape and its impact on change in mathematics and science pedagogies. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).

  70. Walker, D. (2006). Towards productive design studies. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 8–14). Oxford: Routledge Chapman & Hall.

  71. Wilson, M., & Cooney, T. J. (2002). Mathematics teacher change and development. The role of beliefs. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 127–148). Dordrecht, Boston, London: Kluwer.

  72. Winter, H. (1989). Entdeckendes Lernen im Mathematikunterricht: Einblicke in die Ideengeschichte und ihre Bedeutung für die Pädagogik. Braunschweig: Vieweg.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katja Maaß.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Maaß, K., Artigue, M. Implementation of inquiry-based learning in day-to-day teaching: a synthesis. ZDM Mathematics Education 45, 779–795 (2013). https://doi.org/10.1007/s11858-013-0528-0

Download citation

Keywords

  • Inquiry-based learning
  • Implementation of inquiry-based learning
  • Implementation strategies
  • Dissemination
  • Design research
  • Professional development
  • Resources