Advertisement

ZDM

, Volume 45, Issue 6, pp 779–795 | Cite as

Implementation of inquiry-based learning in day-to-day teaching: a synthesis

  • Katja MaaßEmail author
  • Michèle Artigue
Original Article

Abstract

This synthesis is designed to provide insight into the most important issues involved in a large-scale implementation of inquiry-based learning (IBL). We will first turn to IBL itself by reflecting on (1) the definition of IBL and (2) examining the current state of the art of its implementation. Afterwards, we will move on to the implementation of IBL and look at its dissemination through resources, professional development, and the involvement of the context. Based on these theoretical reflections, we will develop a conceptual framework for the analysis of dissemination activities before briefly analyzing four exemplary projects. The aim of our analysis is to reflect on the various implementation strategies and raise awareness of the different ways of using and combining them. This synthesis will end with considerations about the framework and conclusions regarding needed future actions.

Keywords

Inquiry-based learning Implementation of inquiry-based learning Implementation strategies Dissemination Design research Professional development Resources 

References

  1. Adler, J., & Jaworksi, B. (2009). Public writing in the field of mathematics teacher education. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics—The 15th ICMI study (pp. 249–254). New York: Springer.CrossRefGoogle Scholar
  2. Alfieri, L., Brooks, P., Aldrich, N., & Tenenbaum, H. (2011). Does discovery-based instruction enhance learning? Journal of Educational Psychology, 103(1), 1–18.Google Scholar
  3. Altrichter, H., Feldman, A., Posch, P., & Somekh, B. (2008). Teachers investigate their work. An introduction to action research across the professions (2nd ed.). London: Routledge.Google Scholar
  4. Artigue, M., & Blomhøj, M. (2013). Conceptualising inquiry-based education in mathematics. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  5. Baistow, K. (2000). Cross-national research: what can we learn from inter-country comparisons? Social Work in Europe, 7(3), 8–13.Google Scholar
  6. Ball, D. L., & Even, R. (2009). Strengthening practice in and research on the professional education. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics—The 15th ICMI Study (pp. 255–260). New York: Springer.CrossRefGoogle Scholar
  7. Baumert, J., Kunter, M., Brunner, M., Krauss, S., Blum, W., & Neubrand, M. (2004). Mathematikunterricht aus Sicht der PISA-Schülerinnen und -Schüler und ihrer Lehrkräfte. In Deutsches PISA-Konsortium (Ed.), PISA 2003Der Bildungsstand der Jugendlichen in DeutschlandErgebnisse des zweiten internationalen Vergleichs (pp. 314–354). Opladen: Leske + Budrich.Google Scholar
  8. Begg, A., Davis, B., & Bramald, R. (2003). Obstacles to the dissemination of mathematics education research. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 593–634). Dordrecht: Kluwer.CrossRefGoogle Scholar
  9. Bishop, K., & Denleg, P. (2006). Science learning centres and governmental policy for continuing professional development (CPD) in England. Journal of In-service Education, 32(1), 85–102.CrossRefGoogle Scholar
  10. Boaler, J. (2008). Bridging the gap between research and practice: international examples of success. In M. Menghini, F. Furinghetti, L. Giarcardi, & F. Arzarella (Eds.), The first century of the International Commission on Mathematics Instruction (19082008): Reflecting and shaping the world of mathematics education. Roma: Instituto della Enciclopedia Italiana foundata da Giovanni Treccani.Google Scholar
  11. Bruder, R., & Prescott, A. (2013). Research evidence on the benefits of IBL. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  12. Burkhardt, H., & Schoenfeld, A. (2003). Improving educational research: towards a more useful influential and better-funded enterprise. Educational Researcher, 32(9), 3–14.CrossRefGoogle Scholar
  13. Chin, E.-T. & Lin, F.-L. (2013). A survey of the practice of a large scale implementation of inquiry-based Mathematics Teaching - from Taiwan's perspective. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  14. Cobb, P., & Jackson, K. (2012). Analyzing educational policies: A learning design perspective. The Journal of the Learning Sciences, 21, 487–521.CrossRefGoogle Scholar
  15. Cobb, P., Qing, Z., & Dean, C. (2009). Conducting design experiments to support teachers’ learning: A reflection from the field. Journal of the Learning Sciences, 18(2), 165–199.CrossRefGoogle Scholar
  16. Dalton, J. H., Elias, M. J., & Wandersman, A. (2007). Community psychology: Linking individuals and communities. Belmont: Thomson-Wadsworth.Google Scholar
  17. Dorier, J. & Garcia, F.J. (2013). Challenges and opportunities for the implementation of inquiry-based learning in day-to-day teaching. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  18. Edelson, D. (2006). What we learn when we engage in design: implications for assessing design research. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 100–106). Oxford: Routledge Chapman & Hall.Google Scholar
  19. Engeln, K., Euler, M., & Maaß, K. (2013). Inquiry-based learning in mathematics and science: a comparative baseline study of teachers’ beliefs and practices across 12 European countries. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  20. Gräsel, C., & Parchmann, I. (2004). Implementationsforschung–oder der steinige Weg, Unterricht zu verändern. Unterrichtswissenschaft, 32(3), 196–214.Google Scholar
  21. Gravemeijer, K., & Cobb, P. (2006). Design research from a learners’ perspective. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 17–51). Oxford: Routledge Chapman & Hall.Google Scholar
  22. Gueudet, G., Pepin, B., & Trouche, L. (Eds.). (2012). From texts to ‘lived’ resources. New York: Springer.Google Scholar
  23. Gueudet, G., Pepin, B., & Trouche, L. (2013). Textbooks’ design and digital resources. In C. Margolinas (Ed.), Task design in mathematics education. Proceedings of ICMI Study 22 (Vol. 1, pp. 327–337). Oxford.Google Scholar
  24. Gunnarsdottir, G. H., & Palsdottir, G. (2010). The implementation of the intended curriculum in teaching materials: authors’ perspective. In B. Sriraman, C. Bergsten, S. Goodchild, G. Palsdottir, B. Dahl, & L. Haapasalo (Eds.), The first sourcebook on Nordic research in mathematics education (pp. 539–549). Greenwich: IAP Information Age Publishing.Google Scholar
  25. Hart, L. C. (2002). A four-year follow-up study of teachers beliefs after participating in a teacher enhancement project. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 161–176). Dordrecht/Boston/London: Kluwer.Google Scholar
  26. Joubert, M., & Sutherland, R. (2009). A perspective on the literature: CPC for teachers of mathematics. London: National Centre for Excellence in the Teaching of Mathematics.Google Scholar
  27. Kelly, A. (2006). Quality criteria for design research: evidence and commitments. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 107–118). Oxford: Routledge Chapman & Hall.Google Scholar
  28. Krainer, K. (1998). Some considerations on problems and perspectives of mathematics teacher in-service education. In C. Alsina, J. M. Alvarez, B. Hodgson, C. Laborde, & A. Perez (Eds.), The 8th International Congress on Mathematical Education (ICME 8). Selected Lectures (pp. 303–321). Sevilla: S.A.E.M. Thales.Google Scholar
  29. Krainer, K. (2012). Education of mathematics teacher educators. Encyclopedia of Mathematics Education. Heidelberg: Springer.Google Scholar
  30. Krainer, K., & Zehetmeier, S. (2013). Inquiry-based learning for students, teachers, researchers, and representatives of educational administration and policy. Reflections on a nation-wide initiative fostering educational innovations. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  31. Lee, M. M., Chauvot, J., Plankis, B., Vowell, J., & Culpepper, S. (2011). Integrating to learn and learning to integrate: a case study of an online master’s program on science–mathematics integration for middle school teachers. Internet and Higher Education, 14, 191–200.CrossRefGoogle Scholar
  32. Linn, M. (2003). Technology and science education: starting points, research programs, and trends. International Journal of Science Education, 25(6), 727–758.CrossRefGoogle Scholar
  33. Lipowsky, F., & Rzejak, D. (2012). Lehrerinnen und Lehrer als Lerner – Wann gelingt der Rollen-tausch? Merkmale und Wirkungen wirksamer Lehrerfortbildungen. Schulpädagogik heute, 3(5), 1–17.Google Scholar
  34. Maaß, K. (2009). What are teachers’ beliefs about effective mathematics teaching? In J. Cai, G. Kaiser, B. Perry, & N.-Y. Wong (Eds.), Effective mathematics teaching from teachers’ perspectives: National and cross-national studies (pp. 141–162). Rotterdam: Sense Publishers.Google Scholar
  35. Maaß, K., & Doorman, M. (2013). A model for a widespread implementation of inquiry-based learning. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  36. Maaß, K., Garcia, F. J., Mousoulides, N., & Wake, G. (2013). Designing interdisciplinary tasks in an international design community. In C. Margolinas (Ed.), Task design in mathematics education. Proceedings of ICMI Study 22 (Vol. 1, pp. 369–378). Oxford.Google Scholar
  37. Manouchehri, A., & Goodman, T. (2000). Implementing mathematics reform: the challenge within. Educational Studies in Mathematics, 42, 1–34.CrossRefGoogle Scholar
  38. Matos, J. F., Powell, A., & Sztajn, P. (2009). Mathematics teachers’ professional development: processes of learning in and from practice. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics (pp. 167–184). New York: Springer.CrossRefGoogle Scholar
  39. McDuffie, A. M., & Mather, M. (2006). Reification of instructional materials as part of the process of developing problem-based practices in mathematics education. Teachers and Teaching: theory and practice, 12, 435–459.CrossRefGoogle Scholar
  40. McKenney, S., & Reeves, T. (2012). Conducting educational design research. London/New York: Routledge, Taylor & Francis.Google Scholar
  41. Minner, D., Levy, A., & Century, J. (2010). Inquiry-based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474–496.CrossRefGoogle Scholar
  42. Mischo, C., & Maaß, K. (2013). The effect of teacher beliefs on student competence in mathematical modeling—an intervention study. Journal of Education and Training Studies, 1(1), 19–38.CrossRefGoogle Scholar
  43. Mousoulides, N. (2013). Facilitating parental engagement in school mathematics and science through inquiry-based learning: an examination of teachers’ and parents’ beliefs. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  44. Müller, U. (2003). Weiterbildung der Weiterbildner (Vol. 17). Hamburg: Dr. Kovac.Google Scholar
  45. Müller, F. H., Andreitz, I., Krainer, K., & Mayr, J. (2011). Effects of a research-based learning approach in teacher professional development. In Y. Li & G. Kaiser (Eds.), Expertise in mathematics instruction: An international perspective (pp. 131–149). New York: Springer.CrossRefGoogle Scholar
  46. Nastasi, B. K., Varjas, K., Schensul, S. L., Silva, K. T., Schensul, J. J., & Ratnayake, P. (1998). The participatory intervention model: a framework for conceptualizing and promoting intervention acceptability. School Psychology Quarterly, 15(2), 207–232.CrossRefGoogle Scholar
  47. National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.Google Scholar
  48. National Research Council (2000). Inquiry and the National Science Education Standards. A guide for teaching and learning. Washington, DC: National Academy Press.Google Scholar
  49. Nieveen, N. (2007). Formative evaluation in educational design research. In T. Plomp & N. Nieveen (Eds.), An introduction in educational design research (pp. 89–102). Enschede: SLO, Netherlands Institute for Curriculum Development.Google Scholar
  50. OECD. (1998). Staying ahead: In-service training and teacher professional development. Paris: OECD.Google Scholar
  51. OECD. (2009). Creating effective teaching and learning environments: First results from TALIS. http://www.oecd.org/dataoecd/17/51/43023606.pdf. Accessed 25 July 2013.
  52. Piaget, J. (1980). The psychogenesis of knowledge and its epistemological significance. In: M. Piattelli-Palmarini (Ed.), Language and learning (pp. 23–54). Cambridge, MA: Harvard University Press.Google Scholar
  53. Ponte, J. P. (2008). Research and practice: bridging the gap or changing the focus? In M. Menghini, F. Furinghetti, L. Giarcardi, & F. Arzarella (Eds.), The first century of the International Commission on Mathematics Instruction. Reflecting and shaping the world of mathematics education (pp. 1908–2008). Roma: Instituto della Enciclopedia Italiana foundata da Giovanni Treccani.Google Scholar
  54. Ponte, J. P., Matos, J. F., Guimaraes, H. M., Leal, L. C., & Canavarro, A. P. (1994). Teachers’ and students’ views and attitudes towards a new mathematics curriculum: a case study. Educational Studies in Mathematics, 26, 347–365.CrossRefGoogle Scholar
  55. Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teachers’ learning? Educational Researcher, 29(1), 4–15.CrossRefGoogle Scholar
  56. Robert, A. (2009). Learning in and from practice: comments and reflections. In R. Even & D. Loewenberg Ball (Eds.), The professional education and development of teachers of mathematics (pp. 227–230). New York: Springer.CrossRefGoogle Scholar
  57. Rocard, M., Csermely, P., Jorde, D., Lenzen, D., Walberg-Henriksson, H., & Hemmo, V. (2007). Science education now: A renewed pedagogy for the future of Europe. Brussels: European Commission.Google Scholar
  58. Ross, J. A., McDougall, D., Hogaboam-Gray, A., & LeSage, A. (2003). A survey measuring elementary teachers’ implementation of standards-based mathematics teaching. Journal for Research in Mathematics Education, 34(4), 344–363.CrossRefGoogle Scholar
  59. Schaumburg, H., Prasse, D., & Blömeke, S. (2009). Implementation von Innovation in der Schule. In S. Blömeke, T. Bohl, L. Haag, Lang-Wojtasik, & W. Sacher (Eds.), Handbuch Schule. Bad Heilbrunn: Julius Klinkhardt.Google Scholar
  60. Schoen, H., Cegulla, K., Finn, K., & Fi, C. (2003). Teacher variables that relate to student achievement when using a standards-based curriculum. Journal for Research in Mathematics Education, 34(3), 228–259.CrossRefGoogle Scholar
  61. Schoenfeld, A. & Kilpatrick, J. (2013). A U.S. perspective on the implementation of inquiry-based learning in Mathematics. ZDM - The International Journal on Mathematics Education, 45(6) (this volume).Google Scholar
  62. Stein, M., Smith, M., Henningsen, M., & Silver, E. (2000). Implementing standards-based mathematics instruction: A casebook for professional development. New York: Teachers College Press.Google Scholar
  63. Stillman, G. (2013). Implementation of IBL in Europe from an Australasian perspective. ZDM - The International Journal on Mathematics Education, 45(6) (this volume).Google Scholar
  64. Swan, M. (2006). Collaborative learning in mathematics: a challenge to our beliefs and practices. London: National Institute for Advanced and Continuing Education (NIACE) for the National Research and Development Centre for Adult Literacy and Numeracy (NRDC).Google Scholar
  65. Takahashi, A., & Yoshida, M. (2004). Ideas for establishing lesson-study communities. Teaching Children Mathematics, 10(9), 436–443.Google Scholar
  66. Thompson, M., & Wiliam, D. (2008). Tight but loose: a conceptual framework for scaling up school reforms. In C. Wylie (Ed.), Tight but loose: Scaling up teacher professional development in diverse contexts (pp. 1–44). Princeton: Educational Testing Service.Google Scholar
  67. Tirosh, D., & Graeber, A. O. (2003). Challenging and changing mathematics teaching practices. In A. J. Bishop, M. A. Clements, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Second international handbook of mathematics education (pp. 643–688). Dordrecht: Kluwer.CrossRefGoogle Scholar
  68. van den Akker, J., Gravemeijer, K., McKenney, S., & Nieveen, N. (2006). Introducing educational design. In J. van den Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.), Educational design research (pp. 3–7). Oxford: Routledge Chapman & Hall.Google Scholar
  69. Wake, G., & Burkhardt, H. (2013). Understanding the European policy landscape and its impact on change in mathematics and science pedagogies. ZDM - The International Journal on Mathematics Education, 45(6) (this issue).Google Scholar
  70. Walker, D. (2006). Towards productive design studies. In J. van den Akker, K. Gravemeijer, S. McKenney, & N. Nieveen (Eds.), Educational design research (pp. 8–14). Oxford: Routledge Chapman & Hall.Google Scholar
  71. Wilson, M., & Cooney, T. J. (2002). Mathematics teacher change and development. The role of beliefs. In G. C. Leder, E. Pehkonen, & G. Törner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 127–148). Dordrecht, Boston, London: Kluwer.Google Scholar
  72. Winter, H. (1989). Entdeckendes Lernen im Mathematikunterricht: Einblicke in die Ideengeschichte und ihre Bedeutung für die Pädagogik. Braunschweig: Vieweg.CrossRefGoogle Scholar

Copyright information

© FIZ Karlsruhe 2013

Authors and Affiliations

  1. 1.University of EducationFreiburgGermany
  2. 2.LDARUniversité Paris DiderotParis 7France

Personalised recommendations