Metacognition and mathematics education

Abstract

The role of metacognition in mathematics education is analyzed based on theoretical and empirical work from the last four decades. Starting with an overview on different definitions, conceptualizations and models of metacognition in general, the role of metacognition in education, particularly in mathematics education, is discussed. The article emphasizes the importance of metacognition in mathematics education, summarizing empirical evidence on the relationships between various aspects of metacognition and mathematics performance. As a main result of correlational studies, it can be shown that the impact of declarative metacognition on mathematics performance is substantial (sharing about 15–20% of common variance). Moreover, numerous intervention studies have demonstrated that “normal” learners as well as those with especially low mathematics performance do benefit substantially from metacognitive instruction procedures.

This is a preview of subscription content, access via your institution.

References

  1. Allardice, B. S., & Ginsburg, H. P. (1983). Children’s psychological difficulties in mathematics. In H. P. Ginsburg (Ed.), The development of mathematical thinking. New York: Academic Press.

    Google Scholar 

  2. Artelt, C., Schiefele, U., & Schneider, W. (2001). Predictors of reading literacy. European Journal of Psychology of Education, 16, 363–383.

    Article  Google Scholar 

  3. Best, D. L., & Ornstein, P. A. (1986). Children’s generation and communication of mnemonic organizational strategies. Developmental Psychology, 22, 845–853.

    Article  Google Scholar 

  4. Braten, I., & Throndsen, I. S. (1998). Cognitive strategies in mathematics. Part II: Teaching a more advanced addition strategy to an eight-year-old girl with learning difficulties. Scandinavian Journal of Educational Research, 42, 151–171.

    Article  Google Scholar 

  5. Brophy, J. (1986). Teaching and learning mathematics: Where research should be going. Journal for Research in Mathematics Education, 17, 323–346.

    Article  Google Scholar 

  6. Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology (pp. 77–165). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  7. Brown, A. L., Bransford, J. D., Ferrara, R. A., & Campione, J. C. (1983). Learning, remembering, and understanding. In J. H. Flavell & E. M. Markham (Eds.), Handbook of child psychology: Vol. 3. Cognitive development (pp. 77–166). New York: Wiley.

    Google Scholar 

  8. Carr, M., Alexander, J., & Folds-Bennett, T. (1994). Metacognition and mathematics strategy use. Applied Cognitive Psychology, 8, 583–595.

    Article  Google Scholar 

  9. Carr, M., & Jessup, D. L. (1995). Cognitive and metacognitive predictors of mathematics strategy use. Learning and Instruction, 7, 235–247.

    Google Scholar 

  10. Carr, M., Kurtz, B. E., Schneider, W., Turner, L. A., & Borkowski, J. G. (1989). Strategy acquisition and transfer: Environmental influences on metacognitive development. Developmental Psychology, 25, 765–771.

    Article  Google Scholar 

  11. Cavanaugh, J. C., & Perlmutter, M. (1982). Metamemory: A critical examination. Child Development, 53, 11–28.

    Article  Google Scholar 

  12. Clarke, D. J., Waywood, A., & Stephens, M. (1993). Probing the structure of mathematical writing. Educational Studies in Mathematics, 25(3), 235–250.

    Article  Google Scholar 

  13. Coffman, J. L., Ornstein, P. A., McCall, L. E., & Curran, P. J. (2008). Linking teachers’ memory-relevant language and the development of children’s memory skills. Developmental Psychology, 44, 1640–1654.

    Article  Google Scholar 

  14. Cohors-Fresenborg, E., & Kaune, C. (2001). Mechanisms of the taking effect of metacognition in understanding processes in mathematics teaching. In G. Törner, R. Bruder, N. Neill, A. Peter-Koop, & B. Wollring (Eds.), Developments in mathematics education in German-speaking countries, selected papers from the annual conference on didactics of mathematics, Ludwigsburg (pp. 29–38). Hildesheim: Franzbecker.

    Google Scholar 

  15. Cornoldi, C., Lucangeli, D., Caponi, B., Falco, G., Focchiatti, R., & Todeschini, M. (1995). Matematica e Metacognizione. Trento: Erickson.

    Google Scholar 

  16. Desoete, A., Roeyers, H., & De Clercq, A. (2001). EPA2000: Een instrument om metacognitieve en rekenvaardigheden te meten. [EPA2000: An instrument for measuring metacognitive and arithmetic skills]. Kind en Adolescent, 22(2), 85–94.

    Article  Google Scholar 

  17. Desoete, A., Roeyers, H., & De Clercq, A. (2003). Can offline metacognition enhance mathematical problem solving? Journal of Educational Psychology, 95(1), 188–200.

    Article  Google Scholar 

  18. Desoete, A., & Veenman, M. (Eds.). (2006a). Metacognition in mathematics education. Haupauge, NY: Nova Science.

    Google Scholar 

  19. Desoete, A., & Veenman, M. (2006b). Metacognitions in mathematics: Critical issues on nature, theory, assessment and treatment. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 1–10). Haupauge, NY: Nova Science.

    Google Scholar 

  20. Flavell, J. H. (1971). First discussant’s comments: What is memory development the development of? Human Development, 14, 272–278.

    Article  Google Scholar 

  21. Flavell, J. H. (1979). Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.

    Article  Google Scholar 

  22. Flavell, J. H., Miller, P. H., & Miller, S. A. (2002). Cognitive development (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  23. Flavell, J. H., & Wellman, H. M. (1977). Metamemory. In R. Kail & J. Hagen (Eds.), Perspectives on the development of memory and cognition (pp. 3–33). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  24. Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal of Research in Mathematics Education, 16, 163–176.

    Article  Google Scholar 

  25. Ghatala, E. S., Levin, J. R., Pressley, M., & Goodwin, D. (1986). A componential analysis of effects of derived and supplied strategy–utility information on children’s strategy selections. Journal of Experimental Child Psychology, 41, 76–92.

    Article  Google Scholar 

  26. Goswami, U. (2008). Cognitive development—The learning brain (2nd ed.). Hove, UK: Psychology Press.

    Google Scholar 

  27. Graesser, A. C., McNamara, D. S., & VanLehn, K. (2005). Scaffolding deep comprehension strategies through Point & Query, AutoTutor, and iSTART. Educational Psychologist, 40(4), 225–234.

    Article  Google Scholar 

  28. Holland Joyner, M. H., & Kurtz-Costes, B. (1997). Metamemory development. In N. Cowan (Ed.), The development of memory in childhood (pp. 275–300). Hove, UK: Psychology Press.

    Google Scholar 

  29. Kaune, C. (2006). Reflection and metacognition in mathematics education—tools for the improvement of teaching quality. Zentralblatt für Didaktik der Mathematik, 38(4), 350–360.

    Article  Google Scholar 

  30. Kramarski, B. (2008). Promoting teachers’ algebraic reasoning and self-regulation with metacognitive guidance. Metacognition and Learning, 3(2), 83–99.

    Article  Google Scholar 

  31. Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and meta-cognitive training. American Educational Research Journal, 40, 281–310.

    Article  Google Scholar 

  32. Kreutzer, M. A., Leonard, C., & Flavell, J. H. (1975). An interview study of children’s knowledge about memory. Monographs of the Society for Research in Child Development, 40(serial no. 159).

    Google Scholar 

  33. Kron-Sperl, V., Schneider, W., & Hasselhorn, M. (2008). The development and effectiveness of memory strategies in kindergarten and elementary school: Findings from the Würzburg and Göttingen longitudinal studies. Cognitive Development, 23, 79–104.

    Article  Google Scholar 

  34. Kuhn, D. (1999). Metacognitive development. In L. Balter & C. S. Tamis-LeMonda (Eds.), Child Psychology: A Handbook of Contemporary Issues (pp. 259–286). Philadelphia, PA: Psychology Press.

    Google Scholar 

  35. Kuhn, D. (2000). Theory of mind, metacognition, and reasoning: A life-span perspective. In P. Mitchell & K. J. Riggs (Eds.), Children’s reasoning and the mind (pp. 301–326). Hove, UK: Psychology Press.

    Google Scholar 

  36. Lester, F. K. (1982). Building bridges between psychological and mathematics education research on problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving (pp. 55–85). Philadelphia: The Franklin Institute Press.

    Google Scholar 

  37. Lockl, K., & Schneider, W. (2002). Developmental trends in children’s feeling-of-knowing judgements. International Journal of Behavioral Development, 26, 327–333.

    Article  Google Scholar 

  38. Lucangeli, D., & Cornoldi, C. (1997). Mathematics and metacognition: What is the nature of the relationship? Mathematical Cognition, 3, 121–139.

    Article  Google Scholar 

  39. Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34, 365–394.

    Google Scholar 

  40. Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73(4), 449–471.

    Article  Google Scholar 

  41. Mevarech, Z. R., Tabuk, A., & Sinai, O. (2006). Meta-cognitive instruction in mathematics classrooms: Effects on the solution of different kinds of problems. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 73–81). Haupauge, NY: Nova Science.

    Google Scholar 

  42. Moely, B. E., Santulli, K. A., & Obach, M. S. (1995). Strategy instruction, metacognition, and motivation in the elementary school classroom. In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 301–321). Mahwah, NJ: Erlbaum.

    Google Scholar 

  43. National Institute of Child Health and Human Development (2000). Report of the National Reading Panel. Teaching children to read: an evidence-based assessment of the scientific research literature on reading and its implications for reading instruction: Reports of the subgroups (NIH Publication No. 00-4754). Washington, DC: U.S. Government Printing Office.

  44. Nelson, T. O., & Narens, L. (1994). Why investigate metacognition? In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition. Knowing about knowing (pp. 1–25). Cambridge, MA: MIT Press.

    Google Scholar 

  45. Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  46. OECD (2004). Learning for tomorrow’s world. First results from PISA 2003. Paris: OECD.

    Google Scholar 

  47. Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21, 73–98.

    Article  Google Scholar 

  48. Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117–175.

    Article  Google Scholar 

  49. Paris, S. G., & Oka, E. R. (1986). Children’s reading strategies, metacognition, and motivation. Developmental Review, 6, 25–56.

    Article  Google Scholar 

  50. Pintrich, P., Wolters, C. A., & Baxter, G. P. (2000). Assessing metacognition and self-regulated learning. In G. Schraw & J. C. Impara (Eds.), Issues in the measurement of metacognition (pp. 43–97). Lincoln, NE: Buros Institute of Mental Measurements, University of Nebraska Press.

    Google Scholar 

  51. Polya, G. (1957). How to solve it (2nd ed.). New York: Doubleday.

    Google Scholar 

  52. Polya, G. (1973). Induction and analogy in mathematics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  53. Pressley, M. (1986). The relevance of the Good Strategy User model to the teaching of mathematics. Educational Psychologist, 21, 139–161.

    Article  Google Scholar 

  54. Pressley, M. (1995). What is intellectual development about in the 1990s? In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 1–25). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  55. Pressley, M. (2002). Comprehension strategies instruction. In C. C. Block & M. Pressley (Eds.), Comprehension instruction: Research-based best practices (pp. 11–27). New York: Guilford Press.

    Google Scholar 

  56. Pressley, M., Borkowski, J. G., & O’Sullivan, J. T. (1985). Children’s metamemory and the teaching of memory strategies. In D. L. Forrest-Pressley, G. E. MacKinnon, & T. G. Waller (Eds.), Metacognition, cognition, and human performance (Vol. 1, pp. 111–153). Orlando, FL: Academic Press.

    Google Scholar 

  57. Pressley, M., Borkowski, J. G., & Schneider, W. (1987). Cognitive strategies: Good strategy user’s coordinate metacognition and knowledge. In R. Vasta & G. Whitehurst (Eds.), Annals of Child Development (Vol. 5, pp. 89–129). New York: JAI.

  58. Pressley, M., Borkowski, J. G., & Schneider, W. (1989). Good information processing: What it is and what education can do to promote it. International Journal of Educational Research, 13, 857–867.

    Article  Google Scholar 

  59. Renkl, A. (1996). Träges Wissen: Wenn Erlerntes nicht genutzt wird. Psychologische Rundschau, 47, 78–92.

    Google Scholar 

  60. Russell, R. L., & Ginsburg, H. P. (1981). Cognitive analysis of children’s mathematical difficulties. Rochester, NY: University of Rochester.

    Google Scholar 

  61. Schlagmüller, M., & Schneider, W. (2007). WLST-12. Würzburger Lesestrategie Wissenstest für die Klassen 7 bis 12. Göttingen: Hogrefe.

    Google Scholar 

  62. Schneider, W. (1999). The development of metamemory in children. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 487–513). Cambridge, MA: MIT Press.

    Google Scholar 

  63. Schneider, W. (2010). Memory development in childhood and adolescence. In U. Goswami (Ed.), The Blackwell handbook of cognitive development. London, UK: Blackwell (in press).

  64. Schneider, W., Körkel, J., & Weinert, F. E. (1987). The effects of intelligence, self-concept, and attributional style on metamemory and memory behavior. International Journal of Behavioral Development, 10, 281–299.

    Google Scholar 

  65. Schneider, W., & Lockl, K. (2002). The development of metacognitive knowledge in children and adolescents. In T. J. Perfect & B. L. Schwartz (Eds.), Applied metacognition (pp. 224–257). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  66. Schneider, W., & Lockl, K. (2008). Procedural metacognition in children: Evidence for developmental trends. In J. Dunlosky & B. Bjork (Eds.), A handbook of memory and metacognition. Mahwah, NY: Erlbaum.

    Google Scholar 

  67. Schneider, W., & Pressley, M. (1997). Memory development between 2 and 20. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  68. Schoenfeld, A. H. (1983). Episodes and executive decisions in mathematical problem solving. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 345–395). New York: Academic Press.

    Google Scholar 

  69. Schoenfeld, A. H. (1987). What’s all that fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  70. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.

    Google Scholar 

  71. Schraw, G. (1994). The effect of metacognitive knowledge on local and global monitoring. Contemporary Educational Psychology, 19, 143–154.

    Article  Google Scholar 

  72. Silver, E. A. (1982). Knowledge organization and mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving (pp. 15–25). Philadelphia: Franklin Institute Press.

    Google Scholar 

  73. Sjuts, J. (2002). Metacognition in mathematics lessons. In H.-G. Weigand et al. (Eds.): Developments in mathematics education in German-speaking countries. Selected papers from the annual conference on didactics of mathematics, Bern, 1999 (pp. 76–87). Hildesheim: Verlag Franzbecker.

  74. Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36(2), 157–195.

    Article  Google Scholar 

  75. Teong, S. K. (2003). The effect of metacognitive training on mathematical word-problem solving. Journal of Computer Assisted Learning, 19(1), 46–55.

    Article  Google Scholar 

  76. Van Luit, J. E. H., & Kroesbergen, E. H. (2006). Teaching metacognitive skills to students with mathematical disabilities. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 177–190). Haupauge, NY: Nova Science.

    Google Scholar 

  77. Veenman, M. V. J. (2006). The role of intellectual and metacognitive skills in math problem solving. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 35–50). Haupauge, NY: Nova Science.

    Google Scholar 

  78. Verschaffel, L. (1999). Realistic mathematical modelling and problem solving in the upper elementary school: Analysis and improvement. In J. H. M. Hamers, J. E. H. Van Luit, & B. Csapo (Eds.), Teaching and learning thinking skills. Contexts of learning (pp. 215–240). Lisse: Swets & Zeitlinger.

    Google Scholar 

  79. Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). Toward a knowledge base for school learning. Review of Educational Research, 63, 249–294.

    Google Scholar 

  80. Zimmerman, B. J., & Tsikalas, K. E. (2005). Can computer-based learning environments (CBLEs) be used as self-regulatory tools to enhance learning? Educational Psychologist, 40(4), 267–271.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schneider.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schneider, W., Artelt, C. Metacognition and mathematics education. ZDM Mathematics Education 42, 149–161 (2010). https://doi.org/10.1007/s11858-010-0240-2

Download citation

Keywords

  • Metacognition
  • Mathematics achievement
  • Training effects