Skip to main content

Advertisement

Log in

Metacognition and mathematics education

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

The role of metacognition in mathematics education is analyzed based on theoretical and empirical work from the last four decades. Starting with an overview on different definitions, conceptualizations and models of metacognition in general, the role of metacognition in education, particularly in mathematics education, is discussed. The article emphasizes the importance of metacognition in mathematics education, summarizing empirical evidence on the relationships between various aspects of metacognition and mathematics performance. As a main result of correlational studies, it can be shown that the impact of declarative metacognition on mathematics performance is substantial (sharing about 15–20% of common variance). Moreover, numerous intervention studies have demonstrated that “normal” learners as well as those with especially low mathematics performance do benefit substantially from metacognitive instruction procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allardice, B. S., & Ginsburg, H. P. (1983). Children’s psychological difficulties in mathematics. In H. P. Ginsburg (Ed.), The development of mathematical thinking. New York: Academic Press.

    Google Scholar 

  • Artelt, C., Schiefele, U., & Schneider, W. (2001). Predictors of reading literacy. European Journal of Psychology of Education, 16, 363–383.

    Article  Google Scholar 

  • Best, D. L., & Ornstein, P. A. (1986). Children’s generation and communication of mnemonic organizational strategies. Developmental Psychology, 22, 845–853.

    Article  Google Scholar 

  • Braten, I., & Throndsen, I. S. (1998). Cognitive strategies in mathematics. Part II: Teaching a more advanced addition strategy to an eight-year-old girl with learning difficulties. Scandinavian Journal of Educational Research, 42, 151–171.

    Article  Google Scholar 

  • Brophy, J. (1986). Teaching and learning mathematics: Where research should be going. Journal for Research in Mathematics Education, 17, 323–346.

    Article  Google Scholar 

  • Brown, A. L. (1978). Knowing when, where, and how to remember: A problem of metacognition. In R. Glaser (Ed.), Advances in instructional psychology (pp. 77–165). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Brown, A. L., Bransford, J. D., Ferrara, R. A., & Campione, J. C. (1983). Learning, remembering, and understanding. In J. H. Flavell & E. M. Markham (Eds.), Handbook of child psychology: Vol. 3. Cognitive development (pp. 77–166). New York: Wiley.

    Google Scholar 

  • Carr, M., Alexander, J., & Folds-Bennett, T. (1994). Metacognition and mathematics strategy use. Applied Cognitive Psychology, 8, 583–595.

    Article  Google Scholar 

  • Carr, M., & Jessup, D. L. (1995). Cognitive and metacognitive predictors of mathematics strategy use. Learning and Instruction, 7, 235–247.

    Google Scholar 

  • Carr, M., Kurtz, B. E., Schneider, W., Turner, L. A., & Borkowski, J. G. (1989). Strategy acquisition and transfer: Environmental influences on metacognitive development. Developmental Psychology, 25, 765–771.

    Article  Google Scholar 

  • Cavanaugh, J. C., & Perlmutter, M. (1982). Metamemory: A critical examination. Child Development, 53, 11–28.

    Article  Google Scholar 

  • Clarke, D. J., Waywood, A., & Stephens, M. (1993). Probing the structure of mathematical writing. Educational Studies in Mathematics, 25(3), 235–250.

    Article  Google Scholar 

  • Coffman, J. L., Ornstein, P. A., McCall, L. E., & Curran, P. J. (2008). Linking teachers’ memory-relevant language and the development of children’s memory skills. Developmental Psychology, 44, 1640–1654.

    Article  Google Scholar 

  • Cohors-Fresenborg, E., & Kaune, C. (2001). Mechanisms of the taking effect of metacognition in understanding processes in mathematics teaching. In G. Törner, R. Bruder, N. Neill, A. Peter-Koop, & B. Wollring (Eds.), Developments in mathematics education in German-speaking countries, selected papers from the annual conference on didactics of mathematics, Ludwigsburg (pp. 29–38). Hildesheim: Franzbecker.

    Google Scholar 

  • Cornoldi, C., Lucangeli, D., Caponi, B., Falco, G., Focchiatti, R., & Todeschini, M. (1995). Matematica e Metacognizione. Trento: Erickson.

    Google Scholar 

  • Desoete, A., Roeyers, H., & De Clercq, A. (2001). EPA2000: Een instrument om metacognitieve en rekenvaardigheden te meten. [EPA2000: An instrument for measuring metacognitive and arithmetic skills]. Kind en Adolescent, 22(2), 85–94.

    Article  Google Scholar 

  • Desoete, A., Roeyers, H., & De Clercq, A. (2003). Can offline metacognition enhance mathematical problem solving? Journal of Educational Psychology, 95(1), 188–200.

    Article  Google Scholar 

  • Desoete, A., & Veenman, M. (Eds.). (2006a). Metacognition in mathematics education. Haupauge, NY: Nova Science.

    Google Scholar 

  • Desoete, A., & Veenman, M. (2006b). Metacognitions in mathematics: Critical issues on nature, theory, assessment and treatment. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 1–10). Haupauge, NY: Nova Science.

    Google Scholar 

  • Flavell, J. H. (1971). First discussant’s comments: What is memory development the development of? Human Development, 14, 272–278.

    Article  Google Scholar 

  • Flavell, J. H. (1979). Metacognition and cognitive monitoring. A new area of cognitive-developmental inquiry. American Psychologist, 34, 906–911.

    Article  Google Scholar 

  • Flavell, J. H., Miller, P. H., & Miller, S. A. (2002). Cognitive development (4th ed.). Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Flavell, J. H., & Wellman, H. M. (1977). Metamemory. In R. Kail & J. Hagen (Eds.), Perspectives on the development of memory and cognition (pp. 3–33). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Garofalo, J., & Lester, F. K. (1985). Metacognition, cognitive monitoring, and mathematical performance. Journal of Research in Mathematics Education, 16, 163–176.

    Article  Google Scholar 

  • Ghatala, E. S., Levin, J. R., Pressley, M., & Goodwin, D. (1986). A componential analysis of effects of derived and supplied strategy–utility information on children’s strategy selections. Journal of Experimental Child Psychology, 41, 76–92.

    Article  Google Scholar 

  • Goswami, U. (2008). Cognitive development—The learning brain (2nd ed.). Hove, UK: Psychology Press.

    Google Scholar 

  • Graesser, A. C., McNamara, D. S., & VanLehn, K. (2005). Scaffolding deep comprehension strategies through Point & Query, AutoTutor, and iSTART. Educational Psychologist, 40(4), 225–234.

    Article  Google Scholar 

  • Holland Joyner, M. H., & Kurtz-Costes, B. (1997). Metamemory development. In N. Cowan (Ed.), The development of memory in childhood (pp. 275–300). Hove, UK: Psychology Press.

    Google Scholar 

  • Kaune, C. (2006). Reflection and metacognition in mathematics education—tools for the improvement of teaching quality. Zentralblatt für Didaktik der Mathematik, 38(4), 350–360.

    Article  Google Scholar 

  • Kramarski, B. (2008). Promoting teachers’ algebraic reasoning and self-regulation with metacognitive guidance. Metacognition and Learning, 3(2), 83–99.

    Article  Google Scholar 

  • Kramarski, B., & Mevarech, Z. R. (2003). Enhancing mathematical reasoning in the classroom: The effects of cooperative learning and meta-cognitive training. American Educational Research Journal, 40, 281–310.

    Article  Google Scholar 

  • Kreutzer, M. A., Leonard, C., & Flavell, J. H. (1975). An interview study of children’s knowledge about memory. Monographs of the Society for Research in Child Development, 40(serial no. 159).

    Google Scholar 

  • Kron-Sperl, V., Schneider, W., & Hasselhorn, M. (2008). The development and effectiveness of memory strategies in kindergarten and elementary school: Findings from the Würzburg and Göttingen longitudinal studies. Cognitive Development, 23, 79–104.

    Article  Google Scholar 

  • Kuhn, D. (1999). Metacognitive development. In L. Balter & C. S. Tamis-LeMonda (Eds.), Child Psychology: A Handbook of Contemporary Issues (pp. 259–286). Philadelphia, PA: Psychology Press.

    Google Scholar 

  • Kuhn, D. (2000). Theory of mind, metacognition, and reasoning: A life-span perspective. In P. Mitchell & K. J. Riggs (Eds.), Children’s reasoning and the mind (pp. 301–326). Hove, UK: Psychology Press.

    Google Scholar 

  • Lester, F. K. (1982). Building bridges between psychological and mathematics education research on problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving (pp. 55–85). Philadelphia: The Franklin Institute Press.

    Google Scholar 

  • Lockl, K., & Schneider, W. (2002). Developmental trends in children’s feeling-of-knowing judgements. International Journal of Behavioral Development, 26, 327–333.

    Article  Google Scholar 

  • Lucangeli, D., & Cornoldi, C. (1997). Mathematics and metacognition: What is the nature of the relationship? Mathematical Cognition, 3, 121–139.

    Article  Google Scholar 

  • Mevarech, Z. R., & Kramarski, B. (1997). IMPROVE: A multidimensional method for teaching mathematics in heterogeneous classrooms. American Educational Research Journal, 34, 365–394.

    Google Scholar 

  • Mevarech, Z. R., & Kramarski, B. (2003). The effects of metacognitive training versus worked-out examples on students’ mathematical reasoning. British Journal of Educational Psychology, 73(4), 449–471.

    Article  Google Scholar 

  • Mevarech, Z. R., Tabuk, A., & Sinai, O. (2006). Meta-cognitive instruction in mathematics classrooms: Effects on the solution of different kinds of problems. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 73–81). Haupauge, NY: Nova Science.

    Google Scholar 

  • Moely, B. E., Santulli, K. A., & Obach, M. S. (1995). Strategy instruction, metacognition, and motivation in the elementary school classroom. In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 301–321). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • National Institute of Child Health and Human Development (2000). Report of the National Reading Panel. Teaching children to read: an evidence-based assessment of the scientific research literature on reading and its implications for reading instruction: Reports of the subgroups (NIH Publication No. 00-4754). Washington, DC: U.S. Government Printing Office.

  • Nelson, T. O., & Narens, L. (1994). Why investigate metacognition? In J. Metcalfe & A. P. Shimamura (Eds.), Metacognition. Knowing about knowing (pp. 1–25). Cambridge, MA: MIT Press.

    Google Scholar 

  • Nunes, T., Schliemann, A. D., & Carraher, D. W. (1993). Street mathematics and school mathematics. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • OECD (2004). Learning for tomorrow’s world. First results from PISA 2003. Paris: OECD.

    Google Scholar 

  • Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. Educational Psychologist, 21, 73–98.

    Article  Google Scholar 

  • Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117–175.

    Article  Google Scholar 

  • Paris, S. G., & Oka, E. R. (1986). Children’s reading strategies, metacognition, and motivation. Developmental Review, 6, 25–56.

    Article  Google Scholar 

  • Pintrich, P., Wolters, C. A., & Baxter, G. P. (2000). Assessing metacognition and self-regulated learning. In G. Schraw & J. C. Impara (Eds.), Issues in the measurement of metacognition (pp. 43–97). Lincoln, NE: Buros Institute of Mental Measurements, University of Nebraska Press.

    Google Scholar 

  • Polya, G. (1957). How to solve it (2nd ed.). New York: Doubleday.

    Google Scholar 

  • Polya, G. (1973). Induction and analogy in mathematics. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Pressley, M. (1986). The relevance of the Good Strategy User model to the teaching of mathematics. Educational Psychologist, 21, 139–161.

    Article  Google Scholar 

  • Pressley, M. (1995). What is intellectual development about in the 1990s? In F. E. Weinert & W. Schneider (Eds.), Memory performance and competencies: Issues in growth and development (pp. 1–25). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Pressley, M. (2002). Comprehension strategies instruction. In C. C. Block & M. Pressley (Eds.), Comprehension instruction: Research-based best practices (pp. 11–27). New York: Guilford Press.

    Google Scholar 

  • Pressley, M., Borkowski, J. G., & O’Sullivan, J. T. (1985). Children’s metamemory and the teaching of memory strategies. In D. L. Forrest-Pressley, G. E. MacKinnon, & T. G. Waller (Eds.), Metacognition, cognition, and human performance (Vol. 1, pp. 111–153). Orlando, FL: Academic Press.

    Google Scholar 

  • Pressley, M., Borkowski, J. G., & Schneider, W. (1987). Cognitive strategies: Good strategy user’s coordinate metacognition and knowledge. In R. Vasta & G. Whitehurst (Eds.), Annals of Child Development (Vol. 5, pp. 89–129). New York: JAI.

  • Pressley, M., Borkowski, J. G., & Schneider, W. (1989). Good information processing: What it is and what education can do to promote it. International Journal of Educational Research, 13, 857–867.

    Article  Google Scholar 

  • Renkl, A. (1996). Träges Wissen: Wenn Erlerntes nicht genutzt wird. Psychologische Rundschau, 47, 78–92.

    Google Scholar 

  • Russell, R. L., & Ginsburg, H. P. (1981). Cognitive analysis of children’s mathematical difficulties. Rochester, NY: University of Rochester.

    Google Scholar 

  • Schlagmüller, M., & Schneider, W. (2007). WLST-12. Würzburger Lesestrategie Wissenstest für die Klassen 7 bis 12. Göttingen: Hogrefe.

    Google Scholar 

  • Schneider, W. (1999). The development of metamemory in children. In D. Gopher & A. Koriat (Eds.), Attention and performance XVII: Cognitive regulation of performance: Interaction of theory and application (pp. 487–513). Cambridge, MA: MIT Press.

    Google Scholar 

  • Schneider, W. (2010). Memory development in childhood and adolescence. In U. Goswami (Ed.), The Blackwell handbook of cognitive development. London, UK: Blackwell (in press).

  • Schneider, W., Körkel, J., & Weinert, F. E. (1987). The effects of intelligence, self-concept, and attributional style on metamemory and memory behavior. International Journal of Behavioral Development, 10, 281–299.

    Google Scholar 

  • Schneider, W., & Lockl, K. (2002). The development of metacognitive knowledge in children and adolescents. In T. J. Perfect & B. L. Schwartz (Eds.), Applied metacognition (pp. 224–257). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Schneider, W., & Lockl, K. (2008). Procedural metacognition in children: Evidence for developmental trends. In J. Dunlosky & B. Bjork (Eds.), A handbook of memory and metacognition. Mahwah, NY: Erlbaum.

    Google Scholar 

  • Schneider, W., & Pressley, M. (1997). Memory development between 2 and 20. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Schoenfeld, A. H. (1983). Episodes and executive decisions in mathematical problem solving. In R. Lesh & M. Landau (Eds.), Acquisition of mathematics concepts and processes (pp. 345–395). New York: Academic Press.

    Google Scholar 

  • Schoenfeld, A. H. (1987). What’s all that fuss about metacognition? In A. H. Schoenfeld (Ed.), Cognitive science and mathematics education (pp. 189–215). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching and learning (pp. 334–370). New York: Macmillan.

    Google Scholar 

  • Schraw, G. (1994). The effect of metacognitive knowledge on local and global monitoring. Contemporary Educational Psychology, 19, 143–154.

    Article  Google Scholar 

  • Silver, E. A. (1982). Knowledge organization and mathematical problem solving. In F. K. Lester & J. Garofalo (Eds.), Mathematical problem solving (pp. 15–25). Philadelphia: Franklin Institute Press.

    Google Scholar 

  • Sjuts, J. (2002). Metacognition in mathematics lessons. In H.-G. Weigand et al. (Eds.): Developments in mathematics education in German-speaking countries. Selected papers from the annual conference on didactics of mathematics, Bern, 1999 (pp. 76–87). Hildesheim: Verlag Franzbecker.

  • Stillman, G. A., & Galbraith, P. L. (1998). Applying mathematics with real world connections: Metacognitive characteristics of secondary students. Educational Studies in Mathematics, 36(2), 157–195.

    Article  Google Scholar 

  • Teong, S. K. (2003). The effect of metacognitive training on mathematical word-problem solving. Journal of Computer Assisted Learning, 19(1), 46–55.

    Article  Google Scholar 

  • Van Luit, J. E. H., & Kroesbergen, E. H. (2006). Teaching metacognitive skills to students with mathematical disabilities. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 177–190). Haupauge, NY: Nova Science.

    Google Scholar 

  • Veenman, M. V. J. (2006). The role of intellectual and metacognitive skills in math problem solving. In A. Desoete & M. Veenman (Eds.), Metacognition in mathematics education (pp. 35–50). Haupauge, NY: Nova Science.

    Google Scholar 

  • Verschaffel, L. (1999). Realistic mathematical modelling and problem solving in the upper elementary school: Analysis and improvement. In J. H. M. Hamers, J. E. H. Van Luit, & B. Csapo (Eds.), Teaching and learning thinking skills. Contexts of learning (pp. 215–240). Lisse: Swets & Zeitlinger.

    Google Scholar 

  • Wang, M. C., Haertel, G. D., & Walberg, H. J. (1993). Toward a knowledge base for school learning. Review of Educational Research, 63, 249–294.

    Google Scholar 

  • Zimmerman, B. J., & Tsikalas, K. E. (2005). Can computer-based learning environments (CBLEs) be used as self-regulatory tools to enhance learning? Educational Psychologist, 40(4), 267–271.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, W., Artelt, C. Metacognition and mathematics education. ZDM Mathematics Education 42, 149–161 (2010). https://doi.org/10.1007/s11858-010-0240-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-010-0240-2

Keywords

Navigation