Skip to main content

Advertisement

Log in

Potential scenarios for Internet use in the mathematics classroom

  • Original Article
  • Published:
ZDM Aims and scope Submit manuscript

Abstract

Research on the influence of multiple representations in mathematics education gained new momentum when personal computers and software started to become available in the mid-1980s. It became much easier for students who were not fond of algebraic representations to work with concepts such as function using graphs or tables. Research on how students use such software showed that they shaped the tools to their own needs, resulting in an intershaping relationship in which tools shape the way students know at the same time the students shape the tools and influence the design of the next generation of tools. This kind of research led to the theoretical perspective presented in this paper: knowledge is constructed by collectives of humans-with-media. In this paper, I will discuss how media have shaped the notions of problem and knowledge, and a parallel will be developed between the way that software has brought new possibilities to mathematics education and the changes that the Internet may bring to mathematics education. This paper is, therefore, a discussion about the future of mathematics education. Potential scenarios for the future of mathematics education, if the Internet becomes accepted in the classroom, will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Thinking collective is a term used by Lévy to emphasize that knowledge is produced by collectives composed of human and non-human actors.

  2. Computer Technology, other Media and Mathematics Education Research Group (Sao Paulo State University, Department of Mathematics, Rio Claro, SP, Brazil). http://www.rc.unesp.br/igce/pgem/gpimem.html.

  3. University of Ontario Institute of Technology.

  4. Sao Paulo State University.

References

  • Arzarello, F., & Edwards, L. (2005). Research forum PME 29: gesture and the construction of mathematical meaning. Proceedings of the 29th conference of the international (Vol. 1, pp. 123–154). Melbourne: Group for the Psychology of Mathematics Education.

  • Arzarello, F., Olivera, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practices in Cabri environments. ZDM, 34(3), 66–72. doi:10.1007/BF02655708.

    Article  Google Scholar 

  • Arzarello, F., & Robutti, O. (2004). Approaching functions through motion experiments. Educational Studies in Mathematics, 57(3). ISSN: 0013-1954. In R. Nemirovsky, M. Borba & C. DiMattia (Eds.), Bodily activity and imagination in mathematics learning, PME special issue of educational studies in mathematics 57.3, CD-Rom, Chapter 1.

  • Atweh, B., Calabrese Barton, A., Borba, M. C., Gough, N., Keitel, C., Vistro-Yu, C., et al. (Eds.). (2007). Internationalisation and globalisation in mathematics and science education. Hardcover.

  • Barbosa, J. C., Caldeira, A. D., & Araújo, J. L. (2007). Modelagem Matemática na Educação Matemática Brasileira: pesquisas e práticas educacionais. Recife: SBEM.

    Google Scholar 

  • Bicudo, I. (2002). Demonstrações em Matemática Boletim de Educação Matemática (Vol. 18, ano 15, pp. 79–90). Rio Claro: UNESP.

  • Boal, A. (1979). Theatre of the oppressed. London: Pluto Press.

    Google Scholar 

  • Borba, M. C. (1993). Students’ understanding of transformations of functions using multirepresentational software. Doctoral thesis. Cornell: Cornell University, 377 pp.

  • Borba, M. C. (1994). Um Estudo de Etnomatemática: sua incorporação na elaboração de uma proposta pedagógica para o “núcleo-escola” da favela da vila nogueira-São Quirino. 1987. Dissertação (Mestrado em Educação Matemática). Rio Claro: Instituto de Geociências e Ciências Exatas, Universidade Estadual. Publicado pela Associação de Professores de Matemática, Portugal, 266 f.

  • Borba, M. C. (1999). Tecnologias Informáticas na Educação Matemática e reorganização do pensamento. In M. A. V. Bicudo & M. C. Borba (Eds.), Pesquisa em Educação Matemática: Concepções e Perspectivas. São Paulo: Editora UNESP.

    Google Scholar 

  • Borba, M. C. (2004). Dimensões da Educação Matemática a Distância. In M. A. V. Bicudo & M. Borba (Org.), Educação Matemática: pesquisa em movimento. São Paulo: Cortez, pp. 296–317.

  • Borba, M. C. (2007). Humans with Media: a performance collective in the classroom? Keynote address at the fields symposium on digital mathematical performance, June 2006.

  • Borba, M. C., & Confrey, J. (1996). A student’s construction of transformations of functions in a multiple representational environment. Educational Studies in Mathematics, Dordrecht, 31, 319–337. doi:10.1007/BF00376325.

    Article  Google Scholar 

  • Borba, M. C., & Malheiros, A. P. S. (2007). Diferentes formas de interação entre Internet e Modelagem: desenvolvimento de projetos e o CVM. In J. C. Barbosa, A. D. Caldeira, & J. L. Araújo (Org.), Modelagem Matemática na Educação Matemática Brasileira: Pesquisas e Práticas Educacionais (1 ed., Vol. 1, pp. 195–214). Recife: SBEM.

  • Borba, M. C., Malheiros, A. P. S., & Zulatto, R. B. A. (2007). Educação a Distância Online (1 ed., Vol. 1, 160 pp). Belo Horizonte: Autêntica.

  • Borba, M., & Scheffer, N. (2004). Coordination of multiple representations and body awareness [videopaper]. Educational Studies in Mathematics, 57(3) [on CD-ROM].

  • Borba, M. C., & Villarreal, M. (2005). Humans-with-Media and reorganization of mathematical thinking: Information and communication technologies, modeling, experimentation and visualization. USA: Springer (Mathematics Education Library).

    Google Scholar 

  • Borba, M. C., & Zullato, R. (2006). Different media, different types of collective work in online continuing teacher education: would you pass the pen, please? In N. Jarmila, H. Moraová, M. Krátká, & N. Stehlíková (Eds.) Proceedings of the PME 30 (Vol. 2, pp. 201–208). Czech Republic, Prague: Charles University, Faculty of Education.

  • Cobb, P., & Steffe, L. P. (1983). The constructivist researcher as teacher and model builder. Journal for Research in Mathematics Education, 14, 83–94. doi:10.2307/748576.

    Article  Google Scholar 

  • Confrey, J. (1991). Function Probe (Computer software). Santa Barbara, CA: Intellimation for the Macintosh.

  • Confrey, J. (1994). Voice and perspective: Hearing epistemological innovation students’ words. In N. Bednarz, J. Larochelle, & J. Deseutels (Eds.), Reveu des Sciences de l’education. Special issue: Constructivism in Education, 20(1), 115–133.

  • Confrey, J., & Smith, E. (1994). Comments on James Kaput’s chapter. In A. H. Shoenfeld (Ed.), Mathematical thinking and problem solving. New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  • Diniz, L. N. (2007). O Papel das Tecnologias da Informação e Comunicação nos Projetos de Modelagem Matemática. Dissertação (Mestrado em Educação Matemática). Rio Claro: Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, 117 f.

  • Ferrara, F., Pratt, D., & Robutti, O. (2006). The role and uses of technologies for the teaching of algebra and calculus: ideas discussed at PME over the last 30 years. In A. Gutierrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 237–273). Rotterdam, the Netherlands: Sense Publishers.

    Google Scholar 

  • Gadanidis, G. (2006). Exploring digital mathematical performance in an online teacher education setting. The society for information technology and teacher education 17th international conference, Orlando, Florida, pp. 3726–3731.

  • Gadanidis, G., & Borba, M. C. (2008). Our lives as performance mathematicians. For the learning of mathematics (Vol. 28, pp. 44–51), Série 1, ISSN/ISBN: 02280671.

  • Guin, D., Ruthven, K., & Trouche, L. (2005) The didactical challenge of symbolic calculators. Turning a computational device into a mathematical instrument (Vol. 36), Hardcover, Ships.

  • Hegedus, S., & Lesh, R. (2008). Democratizing access to mathematics through technology: Issues of design, theory and implementation. In Memory of Jim Kaput’s work. Special issue of Educational Studies in Mathematics 68,(2).

  • Hoyles, C., & Noss, R. (2008). Next steps in implementing Kaput’s research programme. Educational Studies in Mathematics, 68(2), 85–97. doi:10.1007/s10649-007-9102-4.

    Article  Google Scholar 

  • Hughes, J. (2007). Qualitative research and new media: Conducting research in a multimodal digital environment. Chicago: American Educational Research Association.

    Google Scholar 

  • Kaput, J. J. (1989). Linking representations in the symbol systems of algebra. In S. Wagner & C. Kieran (Eds.), Research issues in the learning and teaching of algebra. Hillsdale, NJ: LEA.

    Google Scholar 

  • Kerckhove, D. (1995). The skin of culture. Toronto: Somerville.

    Google Scholar 

  • Kieran, C., & Yerushalmy, M. (2004). Working group on technological environments. In K. Stacey, H. Chick, & M. Kendal (Eds.), The future of the teaching and learning of algebra. Boston: Kluwer Academic Publishers.

    Google Scholar 

  • Kress, G. (2003). Literacy in the new media age. London: Routledge.

    Google Scholar 

  • Laborde, C. (1998). Relationships between the spatial and theoretical in geometry: the role of computer dynamic representations in problem solving. In D. Insley & D. C. Johnson (Eds.), Information and communications technologies in school mathematics. Grenoble: Champman and Hall.

    Google Scholar 

  • Laborde, C., Kynigos, C., Hollebrands, K., & Strasser, R. (2006). Teaching and learning geometry with technology. In A. Gutiérrez & P. Boero (Eds.), Handbook of research on the psychology of mathematics education: Past, present and future (pp. 275–304). Rotterdam, the Netherlands: Sense Publishers.

    Google Scholar 

  • Lévy, P. (1993). As Tecnologias da Inteligência: O futuro do pensamento na era da informática (p. 34). Rio de Janeiro: Editora.

    Google Scholar 

  • Lévy, P. (1998). A Máquina Universo: Criação, Cognição e Cultura Informática. Porto Alegre: Artimed.

    Google Scholar 

  • Malheiros, A. P. S. (2004). A Produção Matemática dos Alunos em Ambiente de Modelagem. Dissertação (Mestrado em Educação Matemática). Rio Claro: Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, 180 f.

  • Mariotti, M. A. (2002). Influence of technologies advances on students’ math learning. In L. English, et al. (Eds.), Handbook of international research in mathematics education (pp. 695–723). Hillsdale, NJ: LEA.

    Google Scholar 

  • Marrades, R., & Gutierrez, A. (2000). Proof produced by secondary school students learning geometry in dynamic computer environment. Educational Studies in Mathematics, 44, 87–125. doi:10.1023/A:1012785106627.

    Article  Google Scholar 

  • Moreno-Armella, L., Hegedus, S., & Kaput, J. J. (2008). From static to dynamic mathematics: Historical and representational perspectives. For the learning of mathematics (Vol. 68, pp. 99–111). Serie 2, ISSN 0013-1954.

  • Saviani, D. (1985). Do Senso Comum à Consciência Filosófica. São Paulo: Cortez.

    Google Scholar 

  • Skovsmose, O., & Borba, M. (2004). Research methodology and critical mathematics education. In P. Valero & R. Zevenbergen (Eds.), Researching the socio-political dimensions of mathematics education: Issues of power in theory and methodology. Dordrecht: Kluwer.

    Google Scholar 

  • Steffe, L., & Thompson, P. W. (2000). Teaching experiment methodology: Underlying principles and essential elements. Research design in mathematics and science education. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  • Tall, D. (1991). Advanced mathematical thinking. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Tikhomirov, O. (1981). The psychological consequences of the computerization. In J. Werstch (Ed.), The concept of activity in soviet psychology. New York: Sharp.

    Google Scholar 

Download references

Acknowledgments

The ideas presented in this paper have been developed within GPIMEM, the research group I belong to. I would like to thank the members for their comments and suggestions, in particular Ricardo Scucuglia, Ana Paula Malheiros, Claudio Worle, Maria Helena Herminio, Marcus Maltempi, Orlando Figueiredo, Regina Franchi, and Sandra Barbosa. For the same reason I also would like to thank George Gadanidis and Anne Kepple.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo C. Borba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borba, M.C. Potential scenarios for Internet use in the mathematics classroom. ZDM Mathematics Education 41, 453–465 (2009). https://doi.org/10.1007/s11858-009-0188-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11858-009-0188-2

Keywords

Navigation