Skip to main content
Log in

Abstract

Burr and Erdős in 1975 conjectured, and Chvátal, Rödl, Szemerédi and Trotter later proved, that the Ramsey number of any bounded degree graph is linear in the number of vertices. In this paper, we disprove the natural directed analogue of the Burr–Erdős conjecture, answering a question of Bucić, Letzter, and Sudakov. If H is an acyclic digraph, the oriented Ramsey number of H, denoted \(\overrightarrow {{r_1}} (H)\), is the least N such that every tournament on N vertices contains a copy of H. We show that for any Δ ≥ 2 and any sufficiently large n, there exists an acyclic digraph H with n vertices and maximum degree Δ such that

$$\overrightarrow {{r_1}} (H) \ge {n^{\Omega ({\Delta ^{2/3}}/{{\log }^{5/3}}\,\Delta )}}.$$

This proves that \(\overrightarrow {{r_1}} (H)\) is not always linear in the number of vertices for bounded-degree H. On the other hand, we show that \(\overrightarrow {{r_1}} (H)\) is nearly linear in the number of vertices for typical bounded-degree acyclic digraphs H, and obtain linear or nearly linear bounds for several natural families of bounded-degree acyclic digraphs.

For multiple colors, we prove a quasi-polynomial upper bound \(\overrightarrow {{r_k}} (H) = {2^{{{(\log \,n)}^{{O_k}(1)}}}}\) for all bounded-de gree acyclic digraphs H on n vertices, where \(\overrightarrow {{r_k}} (H)\) is the least N such that every k-edge-colored tournament on N vertices contains a monochromatic copy of H. For k ≥ 2 and n ≥ 4, we exhibit an acyclic digraph H with n vertices and maximum degree 3 such that \(\overrightarrow {{r_k}} (H) \ge {n^{\Omega (\log \,n/\log \log \,n)}}\), showing that these Ramsey numbers can grow faster than any polynomial in the number of vertices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Balko, J. Cibulka, K. Král and J. Kynčl, Ramsey numbers of ordered graphs, Electronic Journal of Combinatorics 27 (2020), Article no. 1.16.

  2. J.-C. Bermond, Some Ramsey numbers for directed graphs, Discrete Mathematics 9 (1974), 313–321.

    Article  MathSciNet  Google Scholar 

  3. B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs, European Journal of Combinatorics 1 (1980), 311–316.

    Article  MathSciNet  Google Scholar 

  4. M. Bucić, S. Letzter and B. Sudakov, Directed Ramsey number for trees, Journal of Combinatorial Theory. Series B 137 (2019), 145–177.

    Article  MathSciNet  Google Scholar 

  5. S. A. Burr, An inequality involving the vertex arboricity and edge arboricity of a graph, Journal of Graph Theory 10 (1986), 403–404.

    Article  MathSciNet  Google Scholar 

  6. S. A. Burr and P. Erdős, On the magnitude of generalized Ramsey numbers for graphs, in Infinite and Finite Sets. I, Colloquia Mathematica Societatis János Bolyai, Vol. 10, North-Holland, Amsterdam, 1975, pp. 214–240.

    Google Scholar 

  7. V. Chvátal, Monochromatic paths in edge-colored graphs, Journal of Combinatorial Theory. Series B 13 (1972), 69–70.

    Article  MathSciNet  Google Scholar 

  8. V. Chvátal, V. Rödl, E. Szemerédi and W. T. Trotter Jr., The Ramsey number of a graph with bounded maximum degree, Journal of Combinatorial Theory. Series B 34 (1983), 239–243.

    Article  MathSciNet  Google Scholar 

  9. D. Conlon, A new upper bound for diagonal Ramsey numbers, Annals of Mathematics 170 (2009), 941–960.

    Article  MathSciNet  Google Scholar 

  10. D. Conlon, The Ramsey number of dense graphs, Bulletin of the London Mathematical Society 45 (2013), 483–496.

    Article  MathSciNet  Google Scholar 

  11. D. Conlon, J. Fox, C. Lee and B. Sudakov, Ordered Ramsey numbers, Journal of Combinatorial Theory. Series B 122 (2017), 353–383.

    Article  MathSciNet  Google Scholar 

  12. D. Conlon, J. Fox and B. Sudakov, Recent developments in graph Ramseytheory, in Surveys in Combinatorics 2015, London Mathematical Society Lecture Note Series, Vol. 424, Cambridge University Press, Cambridge, 2015, pp. 49–118.

    Chapter  Google Scholar 

  13. D. Conlon, J. Fox and B. Sudakov, Short proofs of some extremal results II, Journal of Combinatorial Theory. Series B 121 (2016), 173–196.

    Article  MathSciNet  Google Scholar 

  14. N. Draganić, F. Dross, J. Fox, A. Girão, F. Havet, D. Korándi, W. Lochet, D. Munhá Correia, A. Scott and B. Sudakov, Powers of paths in tournaments, Combinatorics, Probability and Computing 30 (2021), 894–898.

    Article  MathSciNet  Google Scholar 

  15. F. Dross and F. Havet, On the unavoidability of oriented trees in The proceedings of Lagos 2019, the tenth Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2019), Electronic Notes in Theoretical Computer Science, Vol. 346, Elsevier, Amsterdam, 2019, pp. 425–436.

    Google Scholar 

  16. A. El Sahili, Trees in tournaments, Journal of Combinatorial Theory. Series B 92 (2004), 183–187.

    Article  MathSciNet  Google Scholar 

  17. P. Erdős and A. Hajnal, Ramsey-type theorems, Discrete Applied Mathematics 25 (1989), 37–52.

    Article  MathSciNet  Google Scholar 

  18. P. Erdös and L. Moser, On the representation of directed graphs as unions of orderings, A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei 9 (1964), 125–132.

    MathSciNet  Google Scholar 

  19. J. Fox and B. Sudakov, Two remarks on the Burr–Erdős conjecture, European Journal of Combinatorics 30 (2009), 1630–1645.

    Article  MathSciNet  Google Scholar 

  20. T. Gallai, On directed paths and circuits, in Theory of graphs (Proc. Colloq., Tihany, 1966), Academic Press, New York, 1968, pp. 115–118.

    Google Scholar 

  21. R. L. Graham, V. Rödl and A. Ruciński, On graphs with linear Ramsey numbers, Journal of Graph Theory 35 (2000), 176–192.

    Article  MathSciNet  Google Scholar 

  22. A. Gyáarfáas and J. Lehel, A Ramsey-type problem in directed and bipartite graphs, Periodica Mathematica Hungarica 3 (1973), 299–304.

    Article  MathSciNet  Google Scholar 

  23. R. Höaggkvist and A. Thomason, Trees in tournaments, Combinatorica 11 (1991), 123–130.

    Article  MathSciNet  Google Scholar 

  24. M. Hasse, Zur algebraischen Begründung der Graphentheorie. I, Mathematische Nachrichten 28 (1965), 275–290.

    Article  Google Scholar 

  25. F. Havet, Trees in tournaments, Discrete Mathematics 243 (2002), 121–134.

    Article  MathSciNet  Google Scholar 

  26. F. Havet and S. Thomassé, Median orders of tournaments: A tool for the second neighborhood problem and Sumner’s conjecture, Journal of Graph Theory 35 (2000), 244–256.

    Article  MathSciNet  Google Scholar 

  27. S. Janson, T. Łuczak and A. Ruciáski, Random Graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization, Wiley-Interscience, New York, 2000.

    Book  Google Scholar 

  28. A. Kostochka and B. Sudakov, On Ramsey numbers of sparse graphs, Combinatorics, Probability and Computing 12 (2003), 627–641.

    Article  MathSciNet  Google Scholar 

  29. D. Kuöhn, R. Mycroft and D. Osthus, A proof of Sumner’s universal tournament conjecture for large tournaments, Proceedings of the London Mathematical Society 102 (2011), 731–766.

    Article  MathSciNet  Google Scholar 

  30. C. Lee, Ramsey numbers of degenerate graphs, Annals of Mathematics 185 (2017), 791–829.

    Article  MathSciNet  Google Scholar 

  31. L. Lovaász, Graphs and Geometry, American Mathematical Society Colloquium Publications, Vol. 65, American Mathematical Society, Providence, RI, 2019.

    Google Scholar 

  32. B. Roy, Nombre chromatique et plus longs chemins d’un graphe, Revue française d’informatique et de recherche opérationnelle 1 (1967), 129–132.

    Article  MathSciNet  Google Scholar 

  33. A. Sah, Diagonal Ramsey via effective quasirandomness, Duke Mathematical Journal 172 (2023), 545–567.

    Article  MathSciNet  Google Scholar 

  34. J. Spencer, Ramsey’s theorem—a new lower bound, Journal of Combinatorial Theory. Series A 18 (1975), 108–115.

    Article  MathSciNet  Google Scholar 

  35. R. Stearns, The voting problem, American Mathematical Monthly 66 (1959), 761–763.

    Article  MathSciNet  Google Scholar 

  36. B. Sudakov, A conjecture of Erdős on graph Ramsey numbers, Advances in Mathematics 227 (2011), 601–609.

    Article  MathSciNet  Google Scholar 

  37. A. Thomason, Paths and cycles in tournaments, Transactions of the American Mathematical Society 296 (1986), 167–180.

    Article  MathSciNet  Google Scholar 

  38. L. M. Vitaver, Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix, Doklady Akademii Nauk SSSR 147 (1962), 728.

    MathSciNet  Google Scholar 

  39. N. C. Wormald, Models of random regular graphs, in Surveys in Combinatorics, London Mathematical Society Lecture Note Series, Vol. 267, Cambridge University Press, Cambridge, 1999, pp. 239–298.

    Google Scholar 

  40. R. Yuster, Paths with many shortcuts in tournaments, Discrete Mathematics 334 (2021), 112–168.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Jasmine Yan for producing Figure 3.1, and the anonymous referee for many helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuval Wigderson.

Additional information

Research supported by a Packard Fellowship and by NSF award DMS-1855635.

Research supported by NSF GRFP Grant DGE-1656518.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fox, J., He, X. & Wigderson, Y. Ramsey numbers of sparse digraphs. Isr. J. Math. (2024). https://doi.org/10.1007/s11856-024-2624-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-024-2624-y

Navigation