Skip to main content
Log in

Complex Hanner’s inequality for many functions

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We establish Hanner’s inequality for arbitrarily many functions in the setting where the Rademacher distribution is replaced with higher dimensional random vectors uniform on Euclidean spheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ball, E. Carlen and E. H. Lieb, Sharp uniform convexity and smoothness inequalities for trace norms, Inventiones Mathematiae 115 (1994), 463–482.

    Article  MathSciNet  Google Scholar 

  2. J. Bourgain and W. J. Davis, Martingale transforms and complex uniform convexity, Transactions of the American Mathematical Society 294 (1986) 501–515.

    Article  MathSciNet  Google Scholar 

  3. E. A. Carlen, R. L. Frank, P. Ivanisvili and E. H. Lieb, Inequalities for Lp-norms that sharpen the triangle inequality and complement Manner’s inequality, Journal of Geometric Analysis 31 (2021), 4051–4073.

    Article  MathSciNet  Google Scholar 

  4. E. A. Carlen, R. L. Frank and E. H. Lieb, Inequalities that sharpen the triangle inequality for sums of N functions in Lp, Arkiv för Matematik 58 (2020), 57–69.

    Article  MathSciNet  Google Scholar 

  5. J. A. Clarkson, J Uniformly convex spaces, Transactions of the American Mathematical Society 40 (1936), 396–414.

    Article  MathSciNet  Google Scholar 

  6. W. J. Davis, D. J. H. Garling and N. Tomczak-Jaegermann, The complex convexity of quasinormed linear spaces, Journal of Functional Analysis 55 (1984), 110–150.

    Article  MathSciNet  Google Scholar 

  7. S. J. Dilworth, Complex convexity and the geometry of Banach spaces, Mathematical Proceedings of the Cambridge Philosophical Society 99 (1986), 495–506.

    Article  MathSciNet  Google Scholar 

  8. O. J. Hanner, On the uniform convexity of Lp and lp, Arkiv för Matematik 3 (1956), 239–244.

    Article  MathSciNet  Google Scholar 

  9. T. Hytönen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces. Vol. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 63, Springer, Cham, 2016.

    Book  Google Scholar 

  10. T. Hytöonen, J. van Neerven, M. Veraar and L. Weis, Analysis in Banach Spaces. Vol. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, 67, Springer, Cham, 2017.

    Book  Google Scholar 

  11. P. Ivanisvili and C. Mooney, Sharpening the triangle inequality: envelopes between L2and Lpspaces, Analysis & PDE 13 (2020), 1591–1603.

    Article  MathSciNet  Google Scholar 

  12. A. Kigami, Y. Okazaki and Y. Takahashi, A generalization of Hanner’s inequality, Bulletin of the Kyushu Institute of Technology. Mathematics, Natural Science 43 (1996), 9–13.

    MathSciNet  Google Scholar 

  13. H. König, On the best constants in the Khintchine inequality for Steinhaus variables, Israel Journal of Mathematics 203 (2014), 23–57.

    Article  MathSciNet  Google Scholar 

  14. H. König and S. Kwapień, Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors, Positivity 5 (2001), 115–152.

    Article  MathSciNet  Google Scholar 

  15. R. Latała and K. Oleszkiewicz, A note on sums of independent uniformly distributed random variables, Colloquium Mathematicum 68 (1995), 197–206.

    Article  MathSciNet  Google Scholar 

  16. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 97, Springer, Berlin–New York, 1979.

    Book  Google Scholar 

  17. G. Schechtman, Two remarks on 1-unconditional basic sequences in Lp, 3 ≤ p < ∞, in Geometric Aspects of Functional Analysis (Israel, 1992–1994), Operator Theory: Advances and Applications, Vol. 77, Birkhäuser, Basel, 1995, pp. 251–254.

    Google Scholar 

  18. Yu. V. Trubnikov, The Hanner inequality and the convergence of iterative processes, Izvestiya Vysshikh Uchebnykh Zavedeniĭ. Matematika 7 (1987), 57–64, 84.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Jenkins.

Additional information

TT’s research supported in part by NSF grant DMS-1955175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jenkins, J., Tkocz, T. Complex Hanner’s inequality for many functions. Isr. J. Math. (2024). https://doi.org/10.1007/s11856-024-2616-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s11856-024-2616-y

Navigation