Skip to main content
Log in

The Hilbert–Grunwald specialization property over number fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given a finite group G and a number field K, we investigate the following question: Does there exist a Galois extension E/K(t) with group G whose set of specializations yields solutions to all Grunwald problems for the group G, outside a finite set of primes? Following previous work, such a Galois extension would be said to have the “Hilbert–Grunwald property”. In this paper we reach a complete classification of groups G which admit an extension with the Hilbert–Grunwald property over fields such as K = ℚ. We thereby also complete the determination of the “local dimension” of finite groups over ℚ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. Adem and R. J. Milgram, Cohomology of Finite Groups, Grundlehren der Mathematischen Wissenschaften, Vol. 309, Springer, Berlin, 2004.

    Book  Google Scholar 

  2. J. K. Arason, B. Fein, M. Schacher and J. Sonn, Cyclic extensions of \(K(\sqrt {- 1})/K\), Transactions of the American Mathematical Society 313 (1989), 843–851.

    MathSciNet  Google Scholar 

  3. E. Artin and J. Tate, Class Field Theory, W. A. Benjamin, New York–Amsterdam 1968.

    Google Scholar 

  4. S. Beckmann, On extensions of number fields obtained by specializing branched coverings, Journal für die reine und angewandte Mathematik 419 (1991), 27–53.

    MathSciNet  Google Scholar 

  5. H. Cartan and S. Eilenberg, Homological Algebra, Princeton University Press, Princeton, NJ, 1956.

    Google Scholar 

  6. P. Dèbes and N. Ghazi, Galois covers and the Hilbert–Grunwald property, Université de Grenoble. Annales de l’Institut Fourier 62 (2012), 989–1013.

    Article  MathSciNet  Google Scholar 

  7. A. Fehm and F. Legrand, A note on finite embedding problems with nilpotent kernel. Journal de Théorie des Nombres de Bordeaux 34 (2022), 549–562.

    Article  MathSciNet  Google Scholar 

  8. M. D. Fried and M. Jarden, Field Arithmetic, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 11, Springer, Berlin, 2008.

    Google Scholar 

  9. W.-D. Geyer and C. U. Jensen, Embeddability of quadratic extensions in cyclic extensions, Forum Mathematicum 19 (2007), 707–725.

    Article  MathSciNet  Google Scholar 

  10. Y. Harpaz and O. Wittenberg, Zéro-cycles sur les espaces homogènes et problème de Galois inverse, Journal of the American Mathematical Society 33 (2020), 775–805.

    Article  MathSciNet  Google Scholar 

  11. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer, New York–Heidelberg, 1977.

    Book  Google Scholar 

  12. C. U. Jensen, A. Ledet and N. Yui, Generic Polynomials, Mathematical Sciences Research Institute Publications, Vol. 45, Cambridge University Press, Cambridge, 2002.

    Google Scholar 

  13. M.-C. Kang, Noether’s problem for dihedral 2-groups. II, Pacific Journal of Mathematics 222 (2005), 301–316.

    Article  MathSciNet  Google Scholar 

  14. J. König, The Grunwald problem and specialization of families of regular Galois extensions, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V 21 (2020), 1531–1552.

    MathSciNet  Google Scholar 

  15. J. König and F. Legrand, Non-parametric sets of regular realizations over number fields, Journal of Algebra 497 (2018), 302–336.

    Article  MathSciNet  Google Scholar 

  16. J. König and F. Legrand, Density results for specialization sets of Galois covers, Journal of the Institute of Mathematics of Jussieu 20 (2021), 1455–1496.

    Article  MathSciNet  Google Scholar 

  17. J. König, F. Legrand and D. Neftin, On the local behavior of specializations of function field extensions, International Mathematics Research Notices 2019 (2019), 2951–2980.

    Article  MathSciNet  Google Scholar 

  18. J. König and D. Neftin, The local dimension of a finite group over a number field, Transactions of the American Mathematical Society 375 (2022), 4783–4808.

    Article  MathSciNet  Google Scholar 

  19. F. Legrand, On parametric extensions over number fields, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V 18 (2018), 551–563.

    MathSciNet  Google Scholar 

  20. B. Plans and N. Vila, Galois covers of1overwith prescribed local or global behavior by specialization, Journal de Théorie des Nombres de Bordeaux 17 (2005), 271–282.

    Article  MathSciNet  Google Scholar 

  21. F. Russo, On the Geometry of Some Special Projective Varieties, Lecture Notes of the Unione Matematica Italiana, Vol. 18, Springer, Cham, 2015.

    Google Scholar 

  22. D. J. Saltman, Generic Galois extensions and problems in field theory. Advances in Mathematics 43 (1982), 250–283.

    Article  MathSciNet  Google Scholar 

  23. J. Sonn, Polynomials with roots inp for all p, Proceedings of the American Mathematical Society 136 (2008), 1955–1960.

    Article  MathSciNet  Google Scholar 

  24. H. Zassenhaus, The Theory of Groups, Chelsea, New York, 1958.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim König.

Additional information

Dedicated to Moshe Jarden on the occasion of his 80th birthday

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

König, J., Neftin, D. The Hilbert–Grunwald specialization property over number fields. Isr. J. Math. 257, 433–463 (2023). https://doi.org/10.1007/s11856-023-2538-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2538-0

Navigation