Skip to main content
Log in

Maximal generalized rank in graphical matrix spaces

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \({M_n}(\mathbb{F})\) be the space of n × n matrices over a field \(\mathbb{F}\). For a subset \({\cal B} \subset {[n]^2}\) let \({M_{\cal B}}(\mathbb{F}) = \{ A \in {M_n}(\mathbb{F}):A(i,j) \notin {\cal B}\} \). Let \({\nu _b}({\cal B})\) denote the matching number of the n by n bipartite graph determined by \({\cal B}\). For \(S \subset {M_n}(\mathbb{F})\) let ρ(S) = max{rk(A): AS}. Li, Qiao, Wigderson, Wigderson and Zhang [6] have recently proved the following characterization of the maximal dimension of bounded rank subspaces of \({M_{\cal B}}(\mathbb{F})\).

Theorem (Li, Qiao, Wigderson, Wigderson, Zhang): For any \({\cal B} \subset {[n]^2}\) (1) \(\max \{ \dim \,W:W \le {M_{\cal B}}(\mathbb{F}),\rho (W) \le k\} = \max \{ |{\cal B}\prime |:{\cal B}\prime \subset {\cal B},{\nu _b}({\cal B}\prime ) \le k\} \).

The main results of this note are two extensions of (1). Let \({\mathbb{S}_n}\) denote the symmetric group on [n]. For \(\omega :\coprod\nolimits_{n = 1}^\infty {{\mathbb{S}_n} \to } {\mathbb{F}^ * } =\mathbb{F} \backslash \{ 0\} \) define a function Dω on each \({M_n}(\mathbb{F})\) by \({D_\omega }(A) = \sum\nolimits_{\sigma \in {\mathbb{S}_n}} {\omega (\sigma )\prod\nolimits_{i = 1}^n {A(i,\sigma (i))} } \). Let rkω(A) be the maximal k such that there exists a k × k submatrix B of A with Dω(B)≠0. For \(S \subset {M_n}(\mathbb{F})\) let \({\rho _\omega }(S) = \max \{ {\rm{r}}{{\rm{k}}_\omega }(A):A \in S\} \). The first extension of (1) concerns general weight functions.

Theorem: For any ω as above and \({\cal B} \subset {[n]^2}\)

$$\max \{ \dim \,W:W \le {M_{\cal B}}(\mathbb{F}),{\rho _\omega }(W) \le k\} = \max \{ |{\cal B}\prime |:{\cal B}\prime \subset {\cal B},{\nu _b}({\cal B}\prime ) \le k\} $$

Let \({A_n}(\mathbb{F})\) denote the space of alternating matrices in \({M_n}(\mathbb{F})\). For a graph \({\cal G} \subset \left( {\matrix{{[n]} \cr 2 \cr } } \right)\) let \({A_{\cal G}}(\mathbb{F}) = \{ A \in {A_n}(\mathbb{F}):A(i,j) = 0\,{\rm{if}}\,\{ i,j\} \notin {\cal G}\} \). Let \(\nu ({\cal G})\) denote the matching number of \({\cal G}\). The second extension of (1) concerns general graphs.

Theorem: For any \({\cal G} \subset \left( {\matrix{{[n]} \cr 2 \cr } } \right)\)

$$\max \{ \dim \,U:U \le {A_{\cal G}}(\mathbb{F}),\rho (U) \le 2k\} = \max \{ |{\cal G}\prime |:{\cal G}\prime \subset {\cal G},\nu ({\cal G}\prime ) \le k\}.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. N. Alon, Combinatorial Nullstellensatz, Combinatorics, Probability and Computing 8 (1999), 7–29.

    Article  MathSciNet  MATH  Google Scholar 

  2. C. de Seguins Pazzis, On the linear preservers of Schur matrix functionals, Linear Algebra and its Applications 567 (2019), 63–117.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. Flanders, On spaces of linear transformations with bounded rank, Journal of the London Mathematical Society 37 (1962), 10–16.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Gelbord and R. Meshulam, Spaces of p–vectors of bounded rank, Israel Journal of Mathematics 126 (2001), 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. E. Guterman and I A. Spiridonov, Permanent Polya problem for additive surjective maps, Linear Algebra and its Applications 599 (2020), 140–155.

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Li, Y. Qiao, A. Wigderson, Y. Wigderson and C. Zhang, Connections between graphs and matrix spaces, Israel Journal of Mathematics 256 (2023), 513–580.

    Article  MathSciNet  Google Scholar 

  7. L. Lovász, Combinatorial Problems and Exercises, AMS Chelsea Publishing, Providence, RI, 2007.

    MATH  Google Scholar 

  8. R. Meshulam, On the maximal rank in a subspace of matrices, Quarterly Journal of Mathematics Oxford 36 (1985), 225–229.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Meshulam, Maximal rank in matrix spaces via graph matchings, Linear Algebra and its Applications 529 (2017), 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, NJ, 1996.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Meshulam.

Additional information

Dedicated to Nati Linial on the occasion of his 70th birthday

Supported by ISF grant 686/20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guterman, A., Meshulam, R. & Spiridonov, I. Maximal generalized rank in graphical matrix spaces. Isr. J. Math. 256, 297–309 (2023). https://doi.org/10.1007/s11856-023-2508-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2508-6

Navigation