Skip to main content
Log in

Bipartite perfect matching as a real polynomial

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We obtain a description of the Bipartite Perfect Matching decision problem as a multilinear polynomial over the Reals. We show that it has full total degree and \((1 - o(1)) \cdot {2^{{n^2}}}\) monomials with non-zero coefficients. In contrast, we show that in the dual representation (switching the roles of 0 and 1) the number of monomials is only exponential in Θ(n log n). Our proof relies heavily on the fact that the lattice of graphs which are “matching-covered” is Eulerian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. G. Beniamini, The approximate degree of bipartite perfect matching, in Proceedings of the 37th Computational Complexity Conference, Leibniz International Proceedings in Informatics, Vol. 234, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Wadern, 2022, Article no. 1.

    Google Scholar 

  2. L. J. Billera and A. Sarangarajan, The combinatorics of permutation polytopes, in Formal Power Series and Algebraic Combinatorics, IMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 24, American Mathematical Society, Providence, RI, 1996, pp. 1–23.

    MATH  Google Scholar 

  3. M. Dietzfelbinger, J. Hromkovič and G. Schnitger, A comparison of two lower-bound methods for communication complexity, Theoretical Computer Science 168 (1996), 39–51.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Dobzinski, N. Nisan and S. Oren, Economic efficiency requires interaction, Games and Economic Behavior 118 (2019), 589–608.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Erdős and A. Rényi, On random matrices, A Magyar Tudományos Akadémia. Matematikai Kutató Intézetének Közleményei 8 (1964), 455–461.

    MathSciNet  MATH  Google Scholar 

  6. A. M. Frieze, Limit distribution for the existence of hamiltonian cycles in random bipartite graphs, European Journal of Combinatorics 6 (1985), 327–334.

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Grünbaum, Convex Polytopes, Graduate Texts in Mathematics, Vol. 221, Springer, New York, 2003.

    MATH  Google Scholar 

  8. G. Hetyei, Rectangular configurations which can be covered by 2×1 rectangles, Pécsi Tanárképző Főiskola Közleményei 8 (1964), 351–367.

    Google Scholar 

  9. G. Ivanyos, H. Klauck, T. Lee, M. Santha and R. de Wolf, New bounds on the classical and quantum communication complexity of some graph properties, in 32nd International Conference on Foundations of Software Technology and Theoretical Computer Science, Leibniz International Proceedings in Informatics, Vol. 18, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Wadern, 2012, pp. 148–159.

    MATH  Google Scholar 

  10. A. Knop, S. Lovett, S. McGuire and W. Yuan, Log-rank and lifting for AND-functions, in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, ACM, New York, 2021, pp. 197–208.

    Chapter  Google Scholar 

  11. J. Kahn, M. Saks and D. Sturtevant, A topological approach to evasiveness, Combinatorica 4 (1984), 297–306.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Mukhopadhyay and B. Loff, Lifting theorems for equality, in 36th International Symposium on Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics, Vol. 126, Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Wadern, 2019, Article no. 50.

    Google Scholar 

  13. N. Nisan, The demand query model for bipartite matching, in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, PA, 2021, pp. 592–599.

    Chapter  Google Scholar 

  14. I. Newman, M. Saks and M. Szegedy, Decision trees, unpublished manuscript, 2008.

  15. N. Nisan and A. Wigderson, On rank vs. communication complexity, Combinatorica 15 (1995), 557–565.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. O’Donnell, Analysis of Boolean Functions, Cambridge University Press, New York, 2014.

    Book  MATH  Google Scholar 

  17. M. Plummer and L. Lovász, Matching Theory, North-Holland Mathematics Studies, Vol. 121, North-Holland, Amsterdam, 1986.

    MATH  Google Scholar 

  18. R. L. Rivest and J. Vuillemin, A generalization and proof of the Aanderaa–Rosenberg conjecture, in Proceedings of the Seventh Annual ACM Symposium on Theory of Computing, ACM, New York, 1975, pp. 6–11.

    Google Scholar 

  19. R. P. Stanley, Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, Vol. 49, Cambridge University Press, Cambridge, 2012.

    MATH  Google Scholar 

  20. T. Tröbst and V. V. Vazirani, A real polynomial for bipartite graph minimum weight perfect matchings, Information Processing Letters 179 (2023), Article no. 106286.

  21. A. C.-C. Yao, Monotone bipartite graph properties are evasive, SIAM Journal on Computing 17 (1988), 517–520.

    Article  MathSciNet  MATH  Google Scholar 

  22. Q. Zou, The log-convexity of the Fubini numbers, Transactions on Combinatorics 7 (2018), 17–23.

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Nati Linial for helpful discussions. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 740282).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gal Beniamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beniamini, G., Nisan, N. Bipartite perfect matching as a real polynomial. Isr. J. Math. 256, 91–131 (2023). https://doi.org/10.1007/s11856-023-2505-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2505-9

Navigation