Skip to main content
Log in

Mean dimension of continuous cellular automata

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We investigate the mean dimension of a cellular automaton (CA for short) with a compact non-discrete space of states. A formula for the mean dimension is established for (near) strongly permutative, permutative algebraic and unit one-dimensional automata. In higher dimensions, a CA permutative algebraic or having a spaceship has infinite mean dimension. However, building on Meyerovitch’s example [Mey08], we give an example of an algebraic surjective cellular automaton with positive finite mean dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Brown, Some applications of an approximation theorem for inverse limits, Proceedings of the American Mathematical Society 11 (1960), 478–483.

    Article  MathSciNet  Google Scholar 

  2. D. Burguet, Rescaled entropy of cellular automata, Nonlinearity 34 (2021), 4897–4922.

    Article  MathSciNet  Google Scholar 

  3. M. Coornaert, Dimension topologique et systèmes dynamiques, Cours Spécialisés, Vol. 14, Société Mathématique de France, Paris, 2005.

    Google Scholar 

  4. M. Coornaert, Topological Dimension and Dynamical Systems, Universitext, Springer, Cham, 2015.

    Book  Google Scholar 

  5. A. Dranishnikov, Cohomological dimension theory of compact metric spaces, Topology Atlas Invited Contributions 6 (2001), http://at.yorku.ca/t/a/i/c/43.pdf.

  6. R. Engelking, Theory of Dimensions, Finite and Infinite, Sigma Series in Pure Mathematics, Vol. 10, Heldermann Verlag, Lemgo, 1995.

    Google Scholar 

  7. M. Gromov, Topological invariants of dynamical systems and spaces of holomorphic maps. I, Mathematical Physics, Analysis and Geometry 2 (1999), 323–415.

    Article  MathSciNet  Google Scholar 

  8. Y. Gutman, Embedding topological dynamical systems with periodic points in cubical shifts, Ergodic Theory and Dynamical Systems 37 (2017), 512–538.

    Article  MathSciNet  Google Scholar 

  9. W. T. Ingram and W. S. Mahavier, Inverse Limits, Developments in Mathematics, Vol. 25, Springer, New York, 2012.

    Google Scholar 

  10. E. Lindenstrauss, Lowering topological entropy, Journal d’Analyse Mathématique 67 (1995), 231–267.

    Article  MathSciNet  Google Scholar 

  11. E. Lindenstrauss, Mean dimension, small entropy factors and an embedding theorem, Institut des Hautes Etudes Scientifiques. Publications Mathématiques 89 (1999), 227–262.

    Article  MathSciNet  Google Scholar 

  12. E. L. Lakshtanov and E. S. Langvagen, A criterion for the infinity of the topological entropy of multidimensional cellular automata, Problems of Information Transmission 40 (2004), 165–167.

    Article  MathSciNet  Google Scholar 

  13. H. Li and B. Liang, Mean dimension, mean rank, and von neumann–lück rank, Journal für die reine und angewandte Mathematik 2018 (2018), 207–240.

    Article  Google Scholar 

  14. E. Lindenstrauss and B. Weiss, Mean topological dimension, Israel Journal of Mathematics 115 (2000), 1–24.

    Article  MathSciNet  Google Scholar 

  15. H. V. McIntosh, Conway’s Life, in Game of Life Cellular Automata, Springer, London, 2010, pp. 17–33.

    Chapter  Google Scholar 

  16. T. Meyerovitch, Finite entropy for multidimensional cellular automata, Ergodic Theory and Dynamical Systems 28 (2008), 1243–1260.

    Article  MathSciNet  Google Scholar 

  17. G. Morris and T. Ward, Entropy bounds for endomorphisms commuting with k actions, Israel Journal of Mathematics 106 (1998), 1–11.

    Article  MathSciNet  Google Scholar 

  18. R. Shi, Finite mean dimension and marker property, Transactions of the American Mathematical Society, to appear, https://arxiv.org/abs/2102.12197.

  19. M. Shub and B. Weiss, Can one always lower topological entropy?, Ergodic Theory and Dynamical Systems 11 (1991), 535–546.

    Article  MathSciNet  Google Scholar 

  20. M. Tsukamoto, Mean dimension of full shifts, Israel Journal of Mathematics 230 (2019), 183–193.

    Article  MathSciNet  Google Scholar 

  21. T. B. Ward, Additive cellular automata and volume growth, Entropy 2 (2000), 142–167.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruxi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burguet, D., Shi, R. Mean dimension of continuous cellular automata. Isr. J. Math. 259, 311–346 (2024). https://doi.org/10.1007/s11856-023-2493-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2493-9

Navigation