Skip to main content
Log in

Reducibility of 1-d Schrödinger equation with unbounded oscillation perturbations

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We build a new estimate for the normalized eigenfunctions of the operator −xx + V(x) based on the oscillatory integrals and Langer’s turning point method, where V(x) ∼ ∣x2 at infinity with > 1. From this estimate and an improved reducibility theorem we show that the equation

$$\matrix{\hfill {{\rm{i}}{\partial _t}\psi = - \partial _x^2\psi + V\left(x \right)\psi + {{\left\langle x \right\rangle}^\mu}W\left({\nu x,\omega t} \right)\psi,\,\,\,\,\psi = \psi \left({t,x} \right),\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,} \cr \hfill {x \in \mathbb{R},\,\,\,\,\,\,\,\mu < \min \left\{{\ell - {2 \over 3},{{\sqrt {4{\ell ^2} - 2\ell + 1} - 1} \over 2}} \right\},} \cr}$$

can be reduced in L2 (ℝ) to an autonomous system for most values of the frequency vector ω and ν, where W(φ, ϕ) is a smooth map from \({\mathbb{T}^d} \times {\mathbb{T}^n}\) to ℝ and odd in φ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Baldi, M. Berti, E. Haus and R. Montalto, Time quasi-periodic gravity water waves in finite depth, Inventiones Mathematicae 214 (2018), 739–911.

    Article  MathSciNet  Google Scholar 

  2. P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Mathematische Annalen 359 (2014), 471–536.

    Article  MathSciNet  Google Scholar 

  3. D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. II, Communications in Mathematical Physics 353 (2017), 353–378.

    Article  MathSciNet  Google Scholar 

  4. D. Bambusi, Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations. I, Transactions of the American Mathematical Society 370 (2018), 1823–1865.

    Article  MathSciNet  Google Scholar 

  5. D. Bambusi, B. Langella and R. Montalto, Growth of Sobolev norms for unbounded perturbations of the Laplacian on flat tori, Journal of Differential Equations 318 (2022), 344–358.

    Article  MathSciNet  Google Scholar 

  6. D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Communications in Mathematical Physics 219 (2001), 465–480.

    Article  MathSciNet  Google Scholar 

  7. D. Bambusi, B. Grébert, A. Maspero and D. Robert, Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation, Analysis & PDE 11 (2018), 775–799.

    Article  MathSciNet  Google Scholar 

  8. D. Bambusi, B. Grébert, A. Maspero and D. Robert, Growth of Sobolev norms for abstract linear Schrödinger equations, Journal of the European Mathematical Society 23 (2021), 557–583.

    Article  MathSciNet  Google Scholar 

  9. D. Bambusi and R. Montalto, Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations. III Journal of Mathematical Physics 59 (2018), Article no. 122702.

  10. M. Berti, KAM for PDEs, Bollettino dell’Unione Matematica Italiana 9 (2016), 115–142.

    Article  MathSciNet  Google Scholar 

  11. M. Berti, KAM theory for partial differential equations, Analysis in Theory and Applications 35 (2019), 235–267.

    Article  MathSciNet  Google Scholar 

  12. M. Berti and R. Montalto, Quasi-periodic standing wave solutions for gravity-capillary water waves, Memoirs of the American Mathematical Societym 263 (2020).

  13. J. Bourgain, Growth of Sobolev norms in linear Schrödinger equations with quasi-periodic potential, Communications in Mathematical Physics 204 (1999), 207–247.

    Article  MathSciNet  Google Scholar 

  14. J.-M. Delort, Growth of Sobolev norms for solutions of time dependent Schrödinger operators with harmonic oscillator potential, Communications in Partial Differential Equations 39 (2014), 1–33.

    Article  MathSciNet  Google Scholar 

  15. L. H. Eliasson, Floquet solutions for the 1-dimensional quasi-periodic Schrödinger equation, Communications in Mathematical Physics 146 (1992), 447–482.

    Article  MathSciNet  Google Scholar 

  16. L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Annals of Mathematics 172 (2010), 371–435.

    Article  MathSciNet  Google Scholar 

  17. R. Feola, F. Giuliani, R. Montalto and M. Procesi, Reducibility of first order linear operators on tori via Moser’s theorem, Journal of Functional Analysis 276 (2019), 932–970.

    Article  MathSciNet  Google Scholar 

  18. R. Feola and M. Procesi, Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations, Journal of Differential Equations 259 (2015), 3389–3447.

    Article  MathSciNet  Google Scholar 

  19. F. Giuliani, Quasi-periodic solutions for quasi-linear generalized KdV equations, Journal of Differential Equations 262 (2017), 5052–5132.

    Article  MathSciNet  Google Scholar 

  20. S. Graffi and K. Yajima, Absolute continuity of the Floquet spectrum for a nonlinearly forced harmonic oscillator, Communications in Mathematical Physics 215 (2000), 245–250.

    Article  MathSciNet  Google Scholar 

  21. B. Grébert and E. Paturel, KAM for the Klein Gordon equation on \({\mathbb{S}^d}\), Bollettino dell’Unione Matematica Italiana 9 (2016), 237–288.

    Article  MathSciNet  Google Scholar 

  22. B. Grebért and E. Paturel, On reducibility of quantum harmonic oscillator ondwith quasiperiodic in time potential, Annales de la Faculté des Sciences de Toulouse: Mathematiques 28 (2019), 977–1014.

    MathSciNet  Google Scholar 

  23. B. Grébert and L. Thomann, KAM for the quantum harmonic oscillator, Communications in Mathematical Physics 307 (2011), 383–427.

    Article  MathSciNet  Google Scholar 

  24. G. Iooss, P. I. Plotnikov and J. F. Toland, Standing waves on an infinitely deep perfect fluid under gravity, Archive for Rational Mechanics and Analysis 177 (2005), 367–478.

    Article  MathSciNet  Google Scholar 

  25. H. Koch and D. Tataru, Lpeigenfunction bounds for the Hermite operator, Duke Mathematical Journal 128 (2005), 369–392.

    Article  MathSciNet  Google Scholar 

  26. Z. Liang and J. Luo, Reducibility of 1-d quantum harmonic oscillator equation with unbounded oscillation perturbations, Journal of Differential Equations 270 (2021), 343–389.

    Article  MathSciNet  Google Scholar 

  27. Z. Liang and Z. Wang, Reducibility of quantum harmonic oscillator ondwith differential and quasi-periodic in time potential, Journal of Differential Equations 267 (2019), 3355–3395.

    Article  MathSciNet  Google Scholar 

  28. Z. Liang and Z. Q. Wang, Reducibility of quantum harmonic oscillator ondperturbed by a quasi-periodic potential with logarithmic decay, Calculus of Variations and Partial Differential Equations 61 (2022), Article no. 155.

  29. Z. Liang, Z. Zhao and Q. Zhou, 1-d quasi-periodic quantum harmonic oscillator with quadratic time-dependent perturbations: Reducibility and growth of Sobolev norms, Journal de Mathématiques Pures et Appliquées 146 (2021), 158–182.

    Article  Google Scholar 

  30. J. Liu and X. Yuan, Spectrum for quantum duffing oscillator and small-divisor equation with large-variable coefficient, Communications on Pure and Applied Mathematics 63 (2010), 1145–1172.

    Article  MathSciNet  Google Scholar 

  31. A. Maspero, Lower bounds on the growth of Sobolev norms in some linear time dependent Schrödinger equations, Mathematical Research Letters 26 (2019), 1197–1215.

    Article  MathSciNet  Google Scholar 

  32. A. Maspero and D. Robert, On time dependent Schrödinger equations: Global well-posedness and growth of Sobolev norms, Journal of Functional Analysis 273 (2017), 721–781.

    Article  MathSciNet  Google Scholar 

  33. R. Montalto, A reducibility result for a class of linear wave equations on \({\mathbb{T}^d}\), International Mathematics Research Notices 2019 (2019), 1788–1862.

    Article  Google Scholar 

  34. R. Montalto, On the growth of Sobolev norms for a class of linear Schrödinger equations on the torus with superlinear dispersion, Asymptotic Analysis 108 (2018), 85–114.

    Article  MathSciNet  Google Scholar 

  35. P. I. Plotnikov and J. F. Toland, Nash—Moser theory for standing water waves, Archice for Rational Mechanics and Analysis 159 (2001), 1–83.

    Article  MathSciNet  Google Scholar 

  36. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Mathematical Series, Vol. 43, Princeton University Press, Princeton, NJ, 1993.

    Google Scholar 

  37. E. C. Titchmarsh, Eigenfunction Expansions Associated With Second-Order Differential Equations. Part 1, Clarendon press, Oxford University Press, Oxford, 1962.

    Book  Google Scholar 

  38. E. C. Titchmarsh, Eigenfunction Expansions Associated With Second-Order Differential Equations. Part 2, Clarendon Press, Oxford University Press, Oxford, 1958.

    Book  Google Scholar 

  39. W.-M. Wang, Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations, Communications in Mathematical Physics 277 (2008), 459–496.

    Article  MathSciNet  Google Scholar 

  40. Z. Wang and Z. Liang, Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay, Nonlinearity 30 (2017), 1405–1448.

    Article  MathSciNet  Google Scholar 

  41. K. Yajima and G. Zhang, Smoothing property for Schrödinger equations with potential superquadratic at infinity, Communications in Mathematical Physics 221 (2001), 573–590.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenguo Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Wang, Z. Reducibility of 1-d Schrödinger equation with unbounded oscillation perturbations. Isr. J. Math. 258, 287–338 (2023). https://doi.org/10.1007/s11856-023-2473-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-023-2473-0

Navigation