Abstract
For a finite group G, let mI(G) denote the largest possible cardinality of a minimal invariable generating set of G. We prove an upper and a lower bound for mI(Sn), which show in particular that mI(Sn) is asymptotic to n/2 as n → ∞.
Similar content being viewed by others
References
T. M. Apostol, Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics, Springer, New York—Heidelberg, 1976.
A. Blokhuis, A. Brouwer and B. De Weger, Binomial collisions and near collisions, Integers 17 (2017), Article no. a64.
P. J. Cameron and P. Cara, Independent generating sets and geometries for symmetric groups, Journal of Algebra 258 (2002), 641–650.
J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Mathematics 105 (1992), 25–39.
B. M. M. de Weger, Equal binomial coefficients: Some elementary considerations, Journal of Number Theory 63 (1997), 373–386.
J. Fulman and R. M. Guralnick, Bounds on the number and sizes of conjugacy classes in finite Chevalley groups with applications to derangements, Transactions of the American Mathematical Society 364 (2012), 3023–3070.
The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.10.2, 2019.
D. Garzoni and N. Gill, On the number of conjugacy classes of a primitive permutation group, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, to appear, https://doi.org/10.1017/prm.2021.74.
D. Garzoni and A. Lucchini, Minimal invariable generating sets, Journal of Pure and Applied Algebra 224 (2020), 218–238.
D. M. Kane, Improved bounds on the number of ways of expressing t as a binomial coefficient, Integers 7 (2007), Article no. a53.
W. M. Kantor, A. Lubotzky and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, Journal of Algebra 348 (2011), 302–314.
M. W. Liebeck, C. E. Praeger and J. Saxl, On the O’Nan-Scott theorem for finite primitive permutation groups, Australian Mathematical Society. Journal. Series A. Pure Mathematics and Statistics 44 (1988), 389–396.
M. W. Liebeck and A. Shalev, Maximal subgroups of symmetric groups, Journal of Combinatorial Theory. Series A 75 (1996), 341–352.
A. Lucchini, The largest size of a minimal generating set of a finite group, Archiv der Mathematik 101 (2013), 1–8.
A. Lucchini, Minimal generating sets of maximal size in finite monolithic groups, Archiv der Mathematik 101 (2013), 401–410.
G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ièmenombrepremier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arithmetica 42 (1983), 367–389.
D. Singmaster, How often does an integer occur as a binomial coefficient?, American Mathematical Monthly 78 (1971), 385–386.
J. Whiston, Maximal independent generating sets of the symmetric group, Journal of Algebra 232 (2000), 255–268.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Garzoni, D., Gill, N. Large minimal invariable generating sets in the finite symmetric groups. Isr. J. Math. 255, 581–598 (2023). https://doi.org/10.1007/s11856-023-2467-y
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-023-2467-y