Skip to main content
Log in

The complexity threshold for the emergence of Kakutani inequivalence

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that linear complexity is the threshold for the emergence of Kakutani inequivalence for measurable systems supported on a minimal subshift. In particular, we show that there are minimal subshifts of arbitrarily low superlinear complexity that admit both loosely Bernoulli and non-loosely Bernoulli ergodic measures and that no minimal subshift with linear complexity can admit inequivalent measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. Boshernitzan, A unique ergodicity of minimal symbolic flows with linear block growth, Journal d’Analyse Mathématique 44 (1984/85), 77–96.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Cyr and B. Kra, Realizing ergodic properties in zero-entropy subshifts, Israel Journal of Mathematics 240 (2020), 119–148.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Donoso, F. Durand, A. Maass and S. Petite, On automorphism groups of low complexity subshifts, Ergodic Theory and Dynamical Systems 36 (2016) 64–95.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. A. Dye, On groups of measure preserving transformations. I, American Journal of Mathematics 81 (1959), 119–159.

    Article  MathSciNet  MATH  Google Scholar 

  5. H. A. Dye, On groups of measure preserving transformations. II, American Journal of Mathematics 85 (1963), 551–576.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Feldman, New K-automorphisms and a problem of Kakutani, Israel Journal of Mathematics 24 (1976), 16–38.

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Ferenczi, Rank and symbolic complexity, Ergodic Theory and Dynamical Systems 16 (1996), 663–682.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Ferenczi, Systems of finite rank, Colloquium Mathematicum 73 (1997), 35–65.

    Article  MathSciNet  MATH  Google Scholar 

  9. F. García-Ramos and D. Kwietniak, On topological models of zero-entropy loosely Bernoulli systems, Transactions of the American Mathematical Society, to appear, https://doi.org/10.1090/tran/8616.

  10. M. Gerber and P. Kunde, Loosely Bernoulli odometer-based systems whose corresponding circular systems are not loosely Bernoulli, Journal d’Analyse Mathématique 141 (2020), 521–583.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Kanigowski, K. Vinhage and D. Wei, Kakutani equivalence of unipotent flows, Duke Mathematical Journal 170 (2021), 1517–1583.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Kanigowski and D. Wei, Product of two Kochergin flows with different exponents is not standard, Studia Mathematica 244 (1965), 265–283.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Katok, Monotone equivalence in ergodic theory, Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya 41 (1977), 104–157.

    MathSciNet  MATH  Google Scholar 

  14. A. Katok, Combinatorial Constructions in Ergodic Theory and Dynamics, University Lecture Series, Vol. 30, American Mathematical Society, Providence, RI, 2003.

    MATH  Google Scholar 

  15. A. Katok and E. Sataev, Standardness of rearrangement automorphisms of segments and flows on surfaces, Matematicheskie Zametki 20 (1976), 479–488; English Translation: Soviet Mathematics. Doklady 20 (1976), 826–831.

    MathSciNet  Google Scholar 

  16. M. Morse and G. A. Hedlund, Symbolic dynamics II. Sturmian trajectories, American Journal of Mathematics 62 (1940), 1–42.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Ornstein, Bernoulli shifts with the same entropy are isomorphic, Advances in Mathematics 4 (1970), 337–352.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Ornstein, D. Rudolph and B. Weiss, Equivalence of measure preserving transformations, Memoirs of the American Mathematical Society 37 (1982).

  19. D. Rudolph, Restricted orbit equivalence, Memoirs of the American Mathematical Society 54 (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bryna Kra.

Additional information

We dedicate this paper to Benjy Weiss on the occasion of his 80 th birthday

The authors thank the Casa Matemática Oaxaca (CMO) for hosting the “Symbolic Dynamical Systems” workshop during which this work was started. The third author was partially supported by NSF grant DMS-1800544.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cyr, V., Johnson, A., Kra, B. et al. The complexity threshold for the emergence of Kakutani inequivalence. Isr. J. Math. 251, 271–300 (2022). https://doi.org/10.1007/s11856-022-2426-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2426-z

Navigation