Skip to main content
Log in

Uncountably many permutation stable groups

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In a 1937 paper B. H. Neumann constructed an uncountable family of 2-generated groups. We prove that all of his groups are permutation stable by analyzing the structure of their invariant random subgroups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abért, Y. Glasner and B. Virág, Kesten’s theorem for invariant random subgroups, Duke Mathematical Journal 163 (2014), 465–488.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Arzhantseva and L. Păunescu, Almost commuting permutations are near commuting permutations, Journal of Functional Analysis 269 (2015), 745–757.

    Article  MathSciNet  MATH  Google Scholar 

  3. O. Becker, A. Lubotzky and A. Thom, Stability and invariant random subgroups, Duke Mathematical Journal 168 (2019), 2207–2234.

    Article  MathSciNet  MATH  Google Scholar 

  4. L. Glebsky and L. M. Rivera, Almost solutions of equations in permutations, Taiwanese Journal of Mathematics 13 (2009), 493–500.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Lindenstrauss, Pointwise theorems for amenable groups, Inventiones Mathematicae 146 (2001), 259–295.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Levit and A. Lubotzky, Infinitely presented permutation stable groups and invariant random subgroups of metabelian groups, Ergodic Theory and Dynamical Systems 42 (2022), 2028–2063.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Lubotzky, L. Pyber and A. Shalev, Discrete groups of slow subgroup growth, Israel Journal of Mathematics 96 (1996), 399–418.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Lubotzky and B. Weiss, Groups and expanders, in Expanding Graphs (Princeton, NJ, 1992), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 10, American Mathematical Society, Providence, RI, 1993, pp. 95–109.

    Chapter  Google Scholar 

  9. B. H. Neumann, Some remarks on infinite groups, Journal of the London Mathematical Society 1 (1937), 120–127.

    Article  MATH  Google Scholar 

  10. R. R. Phelps, Lectures on Choquet’s Theorem, Lecture Notes in Mathematics, Vol. 1757, Springer, Berlin, 2001.

    MATH  Google Scholar 

  11. S. Thomas, Characters and invariant random subgroups of the finitary symmetric group, Advances in Mathematics 399 (2022), Article no. 108272.

  12. A. M. Vershik, Totally nonfree actions and the infinite symmetric group, Moscow Mathematical Journal 12 (2012), 193–212.

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Walters, An Introduction to Ergodic Theory, Graduate Texts in Mathematics, Vol. 79, Springer, New York—Berlin, 1982.

    Book  MATH  Google Scholar 

  14. T. Zheng, On rigid stabilizers and invariant random subgroups of groups of homeomorphisms, https://arxiv.org/abs/1901.04428.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arie Levit.

Additional information

To Benjy Weiss with admiration and affection

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levit, A., Lubotzky, A. Uncountably many permutation stable groups. Isr. J. Math. 251, 657–678 (2022). https://doi.org/10.1007/s11856-022-2425-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2425-0

Navigation