Skip to main content
Log in

Subgroups of free proalgebraic groups and Matzat’s conjecture for function fields

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that a closed finite index subgroup of a free proalgebraic group is itself a free proalgebraic group. As an application, we prove that the absolute differential Galois group of a one-variable function field over an algebraically closed characteristic zero field of infinite transcendence degree is a free proalgebraic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bachmayr, D. Harbater, J. Hartmann and M. Wibmer, The differential Galois group of the rational function field, Advances in Mathematics 381 (2021), Article no. 107605.

  2. A. Bachmayr, D. Harbater, J. Hartmann and M. Wibmer, Free differential Galois groups, Transactions of the American Mathematical Society 374 (2021), 4293–4308.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Crespo and Z. Hajto, Algebraic Groups and Differential Galois Theory, Graduate Studies in Mathematics, Vol. 122, American Mathematical Society, Providence, RI, 2011.

    Book  MATH  Google Scholar 

  4. M. Demazure and P. Gabriel, Groupes algébriques. Tome I: Géométrie algébrique, généralités, groupes commutatifs, Masson & Cie, Editeur, Paris; North-Holland, Amsterdam, 1970.

    MATH  Google Scholar 

  5. B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure and A. Vistoli, Fundamental Algebraic Geometry, Mathematical Surveys and Monographs, Vol. 123, American Mathematical Society, Providence, RI, 2005

    MATH  Google Scholar 

  6. M. D. Fried and M. Jarden, Field Arithmetic, Results in Mathematics and Related Areas, Vol. 11, Springer, Berlin, 2008.

    MATH  Google Scholar 

  7. A. R. Magid, Lectures on Differential Galois Theory, University Lecture Series, Vol. 7, American Mathematical Society, Providence, RI, 1994.

    Book  MATH  Google Scholar 

  8. A. R. Magid, The Picard—Vessiot antiderivative closure, Journal of Algebra 244 (2001), 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Ribes and B. Steinberg, A wreath product approach to classical subgroup theorems, L’Enseignement Mathématique 56 (2010), 49–72.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Ribes and P. Zalesskii, Profinite Groups, Results in Mathematics and Related Areas, Vol. 40, Springer, Berlin, 2010.

    Book  MATH  Google Scholar 

  11. J. Sauloy, Differential Galois Theory Through Riemann—Hilbert Correspondence, Graduate Studies in Mathematics, Vol. 177, American Mathematical Society, Providence, RI, 2016.

    Book  MATH  Google Scholar 

  12. H. Stichtenoth, Algebraic Function Fields and Codes, Graduate Texts in Mathematics, Vol. 254, Springer, Berlin, 2009.

    Book  MATH  Google Scholar 

  13. M. van der Put and M. F. Singer, Galois Theory of Linear Differential Equations, Fundamental Principles of Mathematical Sciences, Vol. 328, Springer, Berlin, 2003.

    Book  MATH  Google Scholar 

  14. W. C. Waterhouse, Introduction to Affine Group Schemes, Graduate Texts in Mathematics, Vol. 66, Springer, New York, 1979.

    Book  MATH  Google Scholar 

  15. M. Wibmer, Free proalgebraic groups, Épijournal de Géométrie Algébrique 4 (2020), Article no. 1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Wibmer.

Additional information

This work was supported by the NSF grants DMS-1760212, DMS-1760413, DMS-1760448 and the Lise Meitner grant M-2582-N32 of the Austrian Science Fund FWF.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wibmer, M. Subgroups of free proalgebraic groups and Matzat’s conjecture for function fields. Isr. J. Math. 253, 841–863 (2023). https://doi.org/10.1007/s11856-022-2383-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2383-6

Navigation