Skip to main content
Log in

On the continuity of maximal operators of convolution type at the derivative level

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we study a question related to the continuity of maximal operators of convolution type acting on W1,1(ℝ). We prove that the map u ↦ (u*)′ is continuous from W1,1(ℝ) to L1(ℝ), where u* is the maximal function associated to the Poisson kernel, the Heat kernel or a family of kernels related to the fractional Laplacian. This is the first result of this type for a centered maximal operator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Aldaz and J. Pérez Lázaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities, Transactions of the American Mathematical Society 359 (2007), 2443–2461.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Beltran, C. González-Riquelme, J. Madrid and J. Weigt, Continuity of the gradient of the fractional maximal operator on W 1,1(ℝd), https://arxiv.org/abs/2102.10206.

  3. D. Beltran and J. Madrid, Endpoint Sobolev continuity of the fractional maximal function in higher dimensions, International Mathematics Research Notices 2021 (2021), 17316–17342.

    Article  MathSciNet  MATH  Google Scholar 

  4. S. Bortz, M. Egert and O. Saari, Sobolev contractivity of gradient flow maximal functions, https://arxiv.org/abs/1910.13150.

  5. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations 32 (2007), 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Carneiro, Regularity of maximal operators: Recent progress and some open problems, in New Trends in Applied Harmonic Analysis. Vol. 2—Harmonic Analysis, Geometric Measure Theory, and Applications, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Cham, (2019), pp. 69–92.

    Google Scholar 

  7. E. Carneiro, R. Finder and M. Sousa, On the variation of maximal operators of convolution type II, Revista Matemática Iberoamericana 34 (2018), 739–766.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Carneiro and C. González-Riquelme, Gradient bounds for radial maximal functions, Annales Fennici Mathematici 46 (2021), 495–521.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. Carneiro, C. González-Riquelme and J. Madrid, Sunrise strategy for the continuity of maximal operators, Journal d’Analyse Mathématique, https://doi.org/10.1007/s11854-022-0222-7.

  10. E. Carneiro, J. Madrid and L. B. Pierce, Endpoint Sobolev and BV continuity for maximal operators, Journal of Functional Analysis 273 (2017), 3262–3294.

    Article  MathSciNet  MATH  Google Scholar 

  11. E. Carneiro and B. F. Svaiter, On the variation of maximal operators of convolution type, Journal of Functional Analysis 265 (2013), 837–865.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin, 2001.

    Book  MATH  Google Scholar 

  13. C. González-Riquelme and D. Kosz, BV continuity for the uncentered Hardy—Littlewood maximal operator, Journal of Functional Analysis 281 (2021), Article no. 109037.

  14. J. Kinnunen, The Hardy—Littlewood maximal function of a Sobolev function, Israel Journal of Mathematics 100 (1997), 117–124.

    Article  MathSciNet  MATH  Google Scholar 

  15. O. Kurka, On the variation of the Hardy—Littlewood maximal function, Annales AcademiæScientiarum Fennicæ. Mathematica 40 (2015), 109–133.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Luiro, Continuity of the maximal operator in Sobolev spaces, Proceedings of the American Mathematical Society 135 (2007), 243–251.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Luiro, On the continuous and discontinuous maximal operators, Nonlinear Analysis 172 (2018), 36–58

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Madrid, Endpoint Sobolev and BV continuity for maximal operators, II, Revista Matemática Iberoamericana 35 (2019), 2151–2168.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, Vol. 28, Princeton University Press, Princeton, NJ, 1970.

    Book  MATH  Google Scholar 

  20. H. Tanaka, A remark on the derivative of the one-dimensional Hardy—Littlewood maximal function, Bulletin of the Australian Mathematical Society 65 (2002), 253–258.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Weigt, Variation of the uncentered maximal characteristic function, Revista Matemática Iberoamericana 38 (2022), 823–849.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowlegdements

The author is grateful to E. Carneiro for encouragement and very helpful discussions. The author also thanks M. Sousa for helpful comments about earlier versions of this manuscript. The author was supported by CAPES-Brazil and from the STEP program of ICTP — Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian González-Riquelme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Riquelme, C. On the continuity of maximal operators of convolution type at the derivative level. Isr. J. Math. 253, 745–759 (2023). https://doi.org/10.1007/s11856-022-2375-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2375-6

Navigation