Skip to main content

Sharp growth of the Ornstein—Uhlenbeck operator on Gaussian tail spaces

Abstract

Let X be a standard Gaussian random variable. For any p ∈ (1, ∞), we prove the existence of a universal constant Cp > 0 such that the inequality

$${\mathbb{E}\left({\left| {{h^\prime }{{\left(X \right)}^p}} \right|} \right)^{1/p}} \ge {C_p}\sqrt d {\left({\mathbb{E}{{\left| {h\left(X \right)} \right|}^p}} \right)^{1/p}}$$

holds for all d ≥ 1 and all polynomials h: ℝ → ℂ whose spectrum is supported on frequencies at least d, that is, \(\mathbb{E}h\left(X \right){X^k} = 0\) for all k = 0, 1, …, d − 1. As an application of this optimal estimate, we obtain an affirmative answer to the Gaussian analogue of a question of Mendel and Naor (2014) concerning the growth of the Ornstein—Uhlenbeck operator on tail spaces of the real line. We also show the same bound for the gradient of analytic polynomials in an arbitrary dimension.

This is a preview of subscription content, access via your institution.

References

  1. W. Beckner, Inequalities in Fourier analysis, Annals of Mathematics 102 (1975), 159–182.

    Article  MathSciNet  MATH  Google Scholar 

  2. D. Cordero-Erausquin and A. Eskenazis, Talagrand’s influence inequality revisited, Analysis & PDE, to appear.

  3. A. Defant and M. Mastyło, Lp-norms and Mahler’s measure of polynomials on the n-dimensional torus, Constructive Approximation 44 (2016), 87–101.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Eskenazis and P. Ivanisvili, Dimension independent Bernstein—Markov inequalities in Gauss space, Journal of Approximation Theory 253 (2020), Article no. 105377.

  5. A. Eskenazis and P. Ivanisvili, Polynomial inequalities on the Hamming cube, Probability Theory and Related Fields 178 (2020), 235–287.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Freud, Weighted approximation by polynomials on the real axis, Doklady Akademii Nauk SSSR 191 (1970), 293–294.

    MathSciNet  MATH  Google Scholar 

  7. G. Freud, A certain inequality of Markov type, Doklady Akademii Nauk SSSR 197 (1971), 790–793.

    MathSciNet  Google Scholar 

  8. S. Heilman, E. Mossel and K. Oleszkiewicz, Strong contraction and influences in tail spaces, Transactions of the American Mathematical Society 369 (2017), 4843–4863.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Jackson, On approximation by trigonometric sums and polynomials, Transactions of the American Mathematical Society 13 (1912), 491–515.

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Janson, On hypercontractivity for multipliers on orthogonal polynomials, Arkiv för Matematik 21 (1983), 97–110.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. S. Lubinsky, A survey of weighted polynomial approximation with exponential weights, Surveys in Approximation Theory 3 (2007), 1–105.

    MathSciNet  MATH  Google Scholar 

  12. F. Lust-Piquard, Riesz transforms associated with the number operator on the Walsh system and the fermions, Journal of Functional Analysis 155 (1998), 263–285.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Mendel and A. Naor, Nonlinear spectral calculus and super-expanders, Publications Mathématiques. Institut de Hautes Études Scientifiques 119 (2014), 1–95.

    Article  MathSciNet  MATH  Google Scholar 

  14. P.-A. Meyer, Transformations de Riesz pour les lois gaussiennes, in Seminar on Probability, XVIII, Lecture Notes in Mathematics, Vol. 1059, Springer, Berlin, 1984, pp. 179–193.

    Google Scholar 

  15. F. B. Weissler, Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, Journal of Functional Analysis 37 (1980), 218–234.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paata Ivanisvili.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eskenazis, A., Ivanisvili, P. Sharp growth of the Ornstein—Uhlenbeck operator on Gaussian tail spaces. Isr. J. Math. 253, 469–485 (2023). https://doi.org/10.1007/s11856-022-2373-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2373-8