Skip to main content
Log in

Topological reducibilities for discontinuous functions and their structures

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article, we give a full description of the topological many-one degree structure of real-valued functions, recently introduced by Day—Downey—Westrick. We also clarify the relationship between the Martin conjecture and Day—Downey—Westrick’s topological Turing-like reducibility, also known as parallelized continuous strong Weihrauch reducibility, for single-valued functions: Under the axiom of determinacy, we show that the continuous Weihrauch degrees of parallelizable single-valued functions are well-ordered; and moreover, if f has continuous Weihrauch rank α, then f′ has continuous Weihrauch rank α + 1, where f′(x) is defined as the Turing jump of f(x).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Andretta, The SLO principle and the Wadge hierarchy, in Foundations of the Formal Sciences. V, Studies in Logic (London), Vol. 11, College Publications, London, 2007, pp. 1–38.

    MATH  Google Scholar 

  2. A. Andretta and A. Louveau, Wadge degrees and pointclasses. Introduction to Part III, in Wadge Degrees and Projective Ordinals. The Cabal Seminar. Volume II, Lecture Notes in Logic, Vol. 37, Associations for Symbolic Logic, La Jolla, CA, 2012, pp. 3–23.

    MATH  Google Scholar 

  3. A. Andretta and D. A. Martin, Borel-Wadge degrees, Fundamenta Mathematicae 177 (2003), 175–192.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. Becker, A characterization of jump operators, Journal of Symbolic Logic 53 (1988), 708–728.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Bourgain, On convergent sequences of continuous functions, Bulletin de la Société Mathématique de Belgique 32 (1980), 235–249.

    MathSciNet  MATH  Google Scholar 

  6. V. Brattka, G. Gherardi and A. Pauly, Weihrauch complexity in computable analysis, Theory and Applications of Computability, in Handbook of Computability and Complexity in Analysis, Springer, Cham, 2021, pp. 367–417.

    Chapter  MATH  Google Scholar 

  7. R. Carroy, A quasi-order on continuous functions, Journal of Symbolic Logic 78 (2013), 633–648.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Day, R. Downey and L. Brown Westrick, Three topological reducibilities for discontinuous functions, https://arxiv.org/abs/1906.07600.

  9. M. de Brecht, Quasi-Polish spaces, Annals of Pure and Applied Logic 164 (2013), 356–381.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Duparc, The Steel hierarchy of ordinal valued Borel mappings, Journal of Symbolic Logic 68 (2003), 187–234.

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Elekes, V. Kiss and Z. Vidnyánszky, Ranks on the Baire class ξ functions, Transactions of the American Mathematical Society 368 (2016), 8111–8143.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Ikegami, P. Schlicht and H. Tanaka, Borel subsets of the real line and continuous reducibility, Fundamenta Mathematicae 244 (2019), 209–241.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, Vol. 156, Springer, New York, 1995.

    MATH  Google Scholar 

  14. A. S. Kechris and A. Louveau, A classification of Baire class 1 functions, Transactions of American Mathematical Society 318 (1990), 209–236.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kihara and A. Montalbán, The uniform Martin’s conjecture for many-one degrees, Transactions of the American Mathematical Society 370 (2018), 9025–9044.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Kihara and A. Montalbán, On the structure of the Wadge degrees of bqo-valued Borel functions, Transactions of the American Mathematical Society 371 (2019), 7885–7923.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kihara and V. Selivanov, Wadge-like degrees of Borel bqo-valued functions, Proceedings of the American Mathematical Society 150 (2022), 3989–4003.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Marks, T. Slaman and J. Steel, Martin’s conjecture, arithmetic equivalence, and countable Borel equivalence relations, in Ordinal Definability and Recursion Theory: The Cabal Seminar, Vol. III, Lecture Notes in Logic, Vol. 43, Association for Symbolic Logic, Ithaca, NY, 2016, pp. 493–519.

    Chapter  Google Scholar 

  19. A. Montalbán, Martin’s conjecture: a classification of the naturally occurring Turing degrees, Notices of the American Mathematical Society 66 (2019), 1209–1215.

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Motto Ros, General reducibilities for sets of reals, Ph.D. thesis, Polytechnic of Turin, 2007.

  21. L. Motto Ros, Borel-amenable reducibilities for sets of reals, Journal of Symbolic Logic 74 (2009), 27–49.

    Article  MathSciNet  MATH  Google Scholar 

  22. Y. Pequignot, A Wadge hierarchy for second countable spaces, Archive for Mathematical Logic 54 (2015), 659–683.

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Schlicht, Continuous reducibility and dimension of metric spaces, Archive for Mathematical Logic 57 (2018), 329–359.

    Article  MathSciNet  MATH  Google Scholar 

  24. V. L. Selivanov, Extending Wadge theory to k-partitions, in Unveiling Dynamics and Complexity, Lecture Notes in Computer Science, vol. 10307, Springer, Cham, 2017, pp. 387–399.

    Chapter  Google Scholar 

  25. T. A. Slaman and J. R. Steel, Definable functions on degrees, in Cabal Seminar 81–85, Lecture Notes in Mathematics, Vol. 1333, Springer, Berlin, 1988, pp. 37–55.

    Chapter  Google Scholar 

  26. J. R. Steel, Determinateness and the separation property, Journal of Symbolic Logic 46 (1981), 41–44.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. R. Steel, A classification of jump operators, Journal of Symbolic Logic 47 (1982), 347–358.

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Van Wesep, Wadge degrees and descriptive set theory, in Cabal Seminar 76–77 (Proc. Caltech—UCLA Logic Sem., 1976–77), Lecture Notes in Mathematics, Vol. 689, Springer, Berlin, 1978, pp. 151–170.

    Google Scholar 

  29. R. A. Van Wesep, Separation principles and the axiom of determinateness, Journal of Symbolic Logic 43 (1978), 77–81.

    Article  MathSciNet  MATH  Google Scholar 

  30. W. W. Wadge, Reducibility and determinateness on the Baire space, Ph.D. thesis, University of California, Berkeley, 1983.

    Google Scholar 

  31. W. H. Woodin, Supercompact cardinals, sets of reals, and weakly homogeneous trees, Proceedings of the National Academy of Sciences of the United States of America 85 (1988), 6587–6591.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank Adam Day, Rod Downey, Antonio Montalbán, and Linda Brown Westrick for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Kihara.

Additional information

The author was partially supported by JSPS KAKENHI Grant 19K03602, 21H03392, the JSPS Core-to-Core Program (A. Advanced Research Networks), and the JSPS-RFBR Bilateral Joint Research Project JPJSBP120204809.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kihara, T. Topological reducibilities for discontinuous functions and their structures. Isr. J. Math. 252, 461–500 (2022). https://doi.org/10.1007/s11856-022-2367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2367-6

Navigation