Skip to main content
Log in

The Waring problem for matrix algebras

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

If a noncommutative polynomial f is neither an identity nor a central polynomial of \({\cal A} = {M_n}\left(\mathbb{C} \right)\), then every trace zero matrix in \({\cal A}\) can be written as a sum of two matrices from \(f\left({\cal A} \right) - f\left({\cal A} \right)\). Moreover, “two” cannot be replaced by “one”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Bandman, N. Gordeev, B. Kunyavskii and E. Plotkin, Equations in simple Lie algebras, Journal of Algebra 355 (2012), 67–79.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Bhatia and P. Rosenthal, How and why to solve the operator equation AX − XB = Y, Bulletin of the London Mathematical Society 29 (1997), 1–21.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Brešar, Introduction to Noncommutative Algebra, Universitext, Springer, Cham, 2014.

    Book  MATH  Google Scholar 

  4. M. Brešar, Commutators and images of noncommutative polynomials, Advances in Mathematics 374 (2020), Article no. 107346.

  5. M. Brešar and I. Klep, Values of noncommutative polynomials, Lie skew-ideals and tracial Nullstellensätze, Mathematical Research Letters 16 (2009), 605–626.

    Article  MathSciNet  MATH  Google Scholar 

  6. C.-L. Chuang, On ranges of polynomials in finite matrix rings, Proceedings of the American Mathematical Society 110 (1990), 293–302.

    Article  MathSciNet  MATH  Google Scholar 

  7. K. R. Davidson and L. W. Marcoux, Linear spans of unitary and similarity orbits of a Hilbert space operator, Journal of Operator Theory 52 (2004), 113–132.

    MathSciNet  MATH  Google Scholar 

  8. P. R. Halmos, Commutators of operators II, American Journal of Mathematics 76 (1954), 191–198.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. A. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Book  MATH  Google Scholar 

  10. A. Kanel-Belov, S. Malev and L. Rowen, Power-central polynomials on matrices, Journal of Pure and Applied Algebra 220 (2016), 2164–2176.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Kanel-Belov, S. Malev, L. Rowen and R. Yavich, Evaluations of noncommutative polynomials on algebras: methods and problems, and the L’vov—Kaplansky conjecture, SIGMA Symmetry, Integrability and Geometry 16 (2020), Article no. 071.

  12. M. Larsen, A. Shalev and P. H. Tiep, The Waring problem for finite simple groups, Annals of Mathematics 174 (2011), 1885–1950.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. de Seguins Pazzis, A note on sums of three square-zero matrices, Linear and Multilinear Algebra 65 (2017), 787–805.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Spenko, On the image of a noncommutative polynomial, Journal of Algebra 377 (2013), 298–311.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matej Brešar.

Additional information

Supported by ARRS Grants P1-0288 and J1-2454.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brešar, M., Šemrl, P. The Waring problem for matrix algebras. Isr. J. Math. 253, 381–405 (2023). https://doi.org/10.1007/s11856-022-2366-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2366-7

Navigation