Skip to main content
Log in

Thin subalgebras of Lie algebras of maximal class

Israel Journal of Mathematics Aims and scope Submit manuscript

Cite this article

Abstract

For every field \(\mathbb{F}\) which has a quadratic extension \(\mathbb{E}\) we show there are non-metabelian infinite-dimensional thin graded Lie algebras all of whose homogeneous components, except the second one, have dimension 2. We construct such Lie algebras as \(\mathbb{F}\)-subalgebras of Lie algebras M of maximal class over \(\mathbb{E}\). We characterise the thin Lie \(\mathbb{F}\)-subalgebras of M generated in degree 1. Moreover, we show that every thin Lie algebra L whose ring of graded endomorphisms of degree zero of L 3 is a quadratic extension of \(\mathbb{F}\) can be obtained in this way. We also characterise the 2-generator \(\mathbb{F}\)-subalgebras of a Lie algebra of maximal class over \(\mathbb{E}\) which are ideally r-constrained for a positive integer r.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Avitabile and G. Jurman, Diamonds in thin Lie algebras, Bollettino della Unione Matematica Italiana. Serie VIII. Sezione B. Articoli di Ricerca Matematica 4 (2001), 597–608.

    MATH  Google Scholar 

  2. M. Avitabile, G. Jurman and S. Mattarei, The structure of thin Lie algebras with characteristic two, International Journal of Algebra and Computation 20 (2010), 731–768.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Caranti and S. Mattarei, Some thin Lie algebras related to Albert\3-Frank algebras and algebras of maximal class, Journal of the Australian Mathematical Society 67 (1999), 157–184.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Caranti, S. Mattarei and M. F. Newman, Graded Lie algebras of maximal class, Transactions of the American Mathematical Society 349 (1997), 4021–4051.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Caranti, S. Mattarei, M. F. Newman and C. M. Scoppola, Thin groups of primepower order and thin Lie algebras, Quarterly Journal of Mathematics. Oxford 47 (1996), 279–296.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Caranti and M. F. Newman, Graded Lie algebras of maximal class. II, Journal of Algebra 229 (2000), 750–784.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Caranti and M. R. Vaughan-Lee, Graded Lie algebras of maximal class. IV, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 29 (2000), 269–312.

    MathSciNet  MATH  Google Scholar 

  8. A. Caranti and M. R. Vaughan-Lee, Graded Lie algebras of maximal class. V, Israel Journal of Mathematics 133 (2003), 157–175.

    Article  MathSciNet  MATH  Google Scholar 

  9. N. Gavioli and V. Monti, Ideally constrained Lie algebras, Journal of Algebra 253 (2002), 31–49.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Gavioli, V. Monti and C. M. Scoppola, Just infinite periodic Lie algebras, in Finite Groups 2003, Walter de Gruyter, Berlin, 2004, pp. 73–85.

    Chapter  Google Scholar 

  11. N. Gavioli, V. Monti and D. S. Young, Metabelian thin Lie algebras, Journal of Algebra 241 (2001), 102–117.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Jurman, Graded Lie algebras of maximal class. III., Journal of Algebra 284 (2005), 435–461.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Shalev and E. I. Zelmanov, Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra, Journal of Algebra 189 (1997), 294–331.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. S. Young, Thin Lie algebras with long second chains, Ph. D. thesis, The Australian National University, Canberra, ACT, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Avitabile.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avitabile, M., Caranti, A., Gavioli, N. et al. Thin subalgebras of Lie algebras of maximal class. Isr. J. Math. 253, 101–112 (2023). https://doi.org/10.1007/s11856-022-2357-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2357-8

Navigation