Abstract
For every field \(\mathbb{F}\) which has a quadratic extension \(\mathbb{E}\) we show there are non-metabelian infinite-dimensional thin graded Lie algebras all of whose homogeneous components, except the second one, have dimension 2. We construct such Lie algebras as \(\mathbb{F}\)-subalgebras of Lie algebras M of maximal class over \(\mathbb{E}\). We characterise the thin Lie \(\mathbb{F}\)-subalgebras of M generated in degree 1. Moreover, we show that every thin Lie algebra L whose ring of graded endomorphisms of degree zero of L 3 is a quadratic extension of \(\mathbb{F}\) can be obtained in this way. We also characterise the 2-generator \(\mathbb{F}\)-subalgebras of a Lie algebra of maximal class over \(\mathbb{E}\) which are ideally r-constrained for a positive integer r.
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
M. Avitabile and G. Jurman, Diamonds in thin Lie algebras, Bollettino della Unione Matematica Italiana. Serie VIII. Sezione B. Articoli di Ricerca Matematica 4 (2001), 597–608.
M. Avitabile, G. Jurman and S. Mattarei, The structure of thin Lie algebras with characteristic two, International Journal of Algebra and Computation 20 (2010), 731–768.
A. Caranti and S. Mattarei, Some thin Lie algebras related to Albert\3-Frank algebras and algebras of maximal class, Journal of the Australian Mathematical Society 67 (1999), 157–184.
A. Caranti, S. Mattarei and M. F. Newman, Graded Lie algebras of maximal class, Transactions of the American Mathematical Society 349 (1997), 4021–4051.
A. Caranti, S. Mattarei, M. F. Newman and C. M. Scoppola, Thin groups of primepower order and thin Lie algebras, Quarterly Journal of Mathematics. Oxford 47 (1996), 279–296.
A. Caranti and M. F. Newman, Graded Lie algebras of maximal class. II, Journal of Algebra 229 (2000), 750–784.
A. Caranti and M. R. Vaughan-Lee, Graded Lie algebras of maximal class. IV, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze 29 (2000), 269–312.
A. Caranti and M. R. Vaughan-Lee, Graded Lie algebras of maximal class. V, Israel Journal of Mathematics 133 (2003), 157–175.
N. Gavioli and V. Monti, Ideally constrained Lie algebras, Journal of Algebra 253 (2002), 31–49.
N. Gavioli, V. Monti and C. M. Scoppola, Just infinite periodic Lie algebras, in Finite Groups 2003, Walter de Gruyter, Berlin, 2004, pp. 73–85.
N. Gavioli, V. Monti and D. S. Young, Metabelian thin Lie algebras, Journal of Algebra 241 (2001), 102–117.
G. Jurman, Graded Lie algebras of maximal class. III., Journal of Algebra 284 (2005), 435–461.
A. Shalev and E. I. Zelmanov, Narrow Lie algebras: a coclass theory and a characterization of the Witt algebra, Journal of Algebra 189 (1997), 294–331.
D. S. Young, Thin Lie algebras with long second chains, Ph. D. thesis, The Australian National University, Canberra, ACT, 2001.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Avitabile, M., Caranti, A., Gavioli, N. et al. Thin subalgebras of Lie algebras of maximal class. Isr. J. Math. 253, 101–112 (2023). https://doi.org/10.1007/s11856-022-2357-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11856-022-2357-8