Skip to main content
Log in

The sigma function over a family of curves with a singular fiber

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we investigate the behavior of the sigma function over the family of cyclic trigonal curves Xs defined by the equation

$${y^3} = x\left( {x - s} \right)\left( {x - {b_1}} \right)\left( {x - {b_2}} \right)$$

in the affine (x, y) plane, for sDε:= {s ∈ ℂ∥s∣ < ε}. We compare the sigma function over the punctured disc Dµ*:= ∖ {0} with the extension over s = 0 that specializes to the sigma function of the normalization \({X_{\hat 0}}\) of the singular curve Xs=0 by investigating explicitly the behavior of a basis of the first algebraic de Rham cohomology group and its period integrals. We demonstrate, using modular properties, that sigma, unlike the theta function, has a limit. In particular, we obtain the limit of the theta characteristics and an explicit description of the theta divisor translated by the Riemann constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah, Riemann surfaces and spin structures, Annales Scientifiques de l’École Normale Supérieure 4 (1971), 47–62.

    Article  MathSciNet  Google Scholar 

  2. H. F. Baker, On the hyperelliptic sigma functions, American Journal of Mathematics 20 (1898), 301–384.

    Article  MathSciNet  Google Scholar 

  3. H. F. Baker, Abelian Functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995.

    Google Scholar 

  4. J. Bernatska, V. Enolski and A. Nakayashiki, Sato Grassmannian and degenerate sigma function, Communications in Mathematical Physics 374 (2020), 627–660.

    Article  MathSciNet  Google Scholar 

  5. J. Bernatska and D. Leykin, On degenerate sigma-function in genus 2, Glasgow Mathematical Journal 61 (2019), 169–193.

    Article  MathSciNet  Google Scholar 

  6. J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi’s identity and the agm, Transactions of the American Mathematical Society 323 (1991), 691–701.

    MathSciNet  MATH  Google Scholar 

  7. V. M. Buchstaber and D. V. Leykin, Solution of the problem of differentiation of abelian functions over parameters for families of (n, s)-curves, Functional Analysis and its Applications 42 (2008), 268–278.

    Article  MathSciNet  Google Scholar 

  8. V. M. Bukhshtaber, V. Z. Ènol’skiĭ and D V. Leĭkin, Rational analogues of abelian functions, Functional Analysis and its Applicatiosn 33 (1999), 83–94.

    Article  MathSciNet  Google Scholar 

  9. A. Clebsch and P. Gordan, Theorie der abelschen funktionen, Teubner, Leipzig, 1866.

    Google Scholar 

  10. J. C. Eilbeck, V. Z. Enol’skii, S. Matsutani, Y. Ônishi and E. Previato, Abelian functions for trigonal curves of genus three, International Mathematics Research Notices 2007 (2007), 1–38.

    Google Scholar 

  11. J. C. Eilbeck, V. Z. Enol’skii, S. Matsutani, Y. Onishi and E. Previato, Addition formulae over the Jacobian pre-image of hyperelliptic Wirtinger varieties, Journal für die reine und angewandte Mathematik 619 (2008), 37–48.

    MathSciNet  MATH  Google Scholar 

  12. J. C. Eilbeck, S. Matsutani and Y. Onishi, Addition formulae for abelian functions associated with specialized curves, Philosophical Transactions of the Royal Society of London. Series A. Mathematical, Physical and Engineering Sciences 369 (2011), 1245–1263.

    MathSciNet  MATH  Google Scholar 

  13. J. C. Eilbeck, V. Z. Enolskii and D. V. Leykin, On the Kleinian construction of abelian functions of canonical algebraic curves, in SIDE III—Symmetries and Integrability of Difference Equations (Sabaudia, 1998) CRM Proceedings & Lecture Notes, Vol. 25, American Mathematical Society, Providence, RI, 2000, pp. 121–138.

    Chapter  Google Scholar 

  14. J. C. Eilbeck, J. Gibbons, Y. Onishi and S. Yasuda, Theory of heat equations for sigma functions, https://arxiv.org/abs/1711.08395.

  15. V. Z. Enolskii and T. Grava, Thomae type formulae for singular zn curves, Letters in Mathematical Physics 76 (2006), 187–214.

    Article  MathSciNet  Google Scholar 

  16. Y. Fedorov and S. Matsutani, in preparation.

  17. J. Igusa, Fibre systems of Jacobian varieties, American Journal of Mathematics 78 (1956), 171–199.

    Article  MathSciNet  Google Scholar 

  18. F. Klein, Ueber hyperelliptische sigmafunctionen, Mathematische Annalen 27 (1886), 431–464.

    Article  MathSciNet  Google Scholar 

  19. K. Kodaira, On compact complex analytic structure ii, Annals of Mathematics 77 (1963), 563–626.

    Article  Google Scholar 

  20. J. Komeda and S. Matsutani, Jacobi inversion formulae for a curve in Weierstrass normal form, in Integrable Systems and Algebraic Geometry, Vol.2 London Mathrmatical Society Lecture Notes Series, Vol. 459, Cambridge University Press, Cambridge, 2020, pp. 383–404.

    Chapter  Google Scholar 

  21. J. Komeda, S. Matsutani and E. Previato, The Riemann constant for a non-symmetric Weierstrass semigroup, Archiv der Mathematik 107 (2016), 499–509.

    Article  MathSciNet  Google Scholar 

  22. J. Komeda, S. Matsutani and E. Previato, The sigma function for trigonal cyclic curves, Letters in Mathematical Physics 109 (2019), 423–447.

    Article  MathSciNet  Google Scholar 

  23. J. Lewittes, Riemann surfaces and the theta functions, Acta Mathematics 111 (1964), 37–61.

    Article  MathSciNet  Google Scholar 

  24. Ju. I. Manin, Algebraic curves over fields with differentiation, in Twenty Two Papers on Algebra, Number Theory and Differential Geometry, American Mathematical Society Translations, Vol. 37, American Mathematical Society, Providence, RI, 1964, pp. 59–78.

    Google Scholar 

  25. S. Matsutani and J. Komeda, Sigma functions for a space curve of type (3, 4, 5), Journal of Geometry and Symmetry in Physics 30 (2013), 75–91.

    MathSciNet  MATH  Google Scholar 

  26. S. Matsutani and E. Previato, Jacobi inversion on strata of the Jacobian of the crs curve yr = f(x), Journal of the Mathematical Society of Japan 60 (2008), 1009–1044.

    Article  MathSciNet  Google Scholar 

  27. S. Matsutani and E. Previato, The al function of a cyclic trigonal curve of genus three, Collectanea Mathematica 66 (2015), 311–349.

    Article  MathSciNet  Google Scholar 

  28. D. Mumford, Theta characteristics of an algebraic curve, Annales Scientifiques de l’Ecole Normale Supérieure 4 (1971), 181–192.

    Article  MathSciNet  Google Scholar 

  29. A. Nakayashiki, On algebraic expansions of sigma functions for (n, s) curves, Asian Journal of Mathematics 14 (2010), 175–212.

    Article  MathSciNet  Google Scholar 

  30. Y. Onishi, Complex multiplication formulae for hyperelliptic curves of genus three, Tokyo Journal of Mathematics 21 (1998), 381–431.

    Article  MathSciNet  Google Scholar 

  31. Y. Onishi, Abelian functions for trigonal curves of degree four and determinantal formulae in purely trigonal case, International Journal of Mathematics 20 (2009), 427–441.

    Article  MathSciNet  Google Scholar 

  32. Y. Onishi, Determinant formulae in abelian functions for a general trigonal curve of degree five, Computational Methods and Function Theory 11 (2011), 547–574.

    Article  MathSciNet  Google Scholar 

  33. Y. Onishi, Arithmetical power series expansion of the sigma function for a plane curve, Proceedings of the Edinburgh Mathematical Society 61 (2018), 995–1022.

    Article  MathSciNet  Google Scholar 

  34. M. van Hoeij, An algorithm for computing the Weierstrass normal form, in Proceedings of the 1995 International Symposium on Symbolic and Algebraic Computation, ACM, New York, 1995, pp. 90–95.

    MATH  Google Scholar 

  35. K. Weierstrass, Zur theorie der abelschen functionen, Journal für die Reine und Angewandte Mathematik 47 (1854), 289–306.

    MathSciNet  Google Scholar 

  36. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927.

    MATH  Google Scholar 

Download references

Acknowledgments

The third-named author thanks Tadashi Ashikaga for helpful and crucial comments, which led to Appendix C. Further, he is also grateful to Chris Eilbeck, Victor Enolskii and Yoshihiro Ônishi for critical discussions and comments, and Takeo Ohsawa and Hajime Kaji for valuable comments. The third named author thanks the participants in Numadu-Shizuoka Kenkyukai and, specially, its organizer Yoshinori Machida. The second- and third-named authors were supported by the Grant-in-Aid for Scientific Research (C) of Japan Society for the Promotion of Science, Grant No. 18K04830 and Grant No. 16K05187 respectively. The first- and the third-named authors thank Victor Enolskii, Julia Bernatska and Tony Shaska for their hospitality at the conference at Kiev August, 2018. The authors thank the anonymous reviewer for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeki Matsutani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, Y., Komeda, J., Matsutani, S. et al. The sigma function over a family of curves with a singular fiber. Isr. J. Math. 250, 345–402 (2022). https://doi.org/10.1007/s11856-022-2340-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2340-4

Navigation