Skip to main content
Log in

Critical points of solutions to a kind of linear elliptic equations in multiply connected domains

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we mainly study the critical points and critical zero points of solutions u to a kind of linear elliptic equations with nonhomogeneous Dirichlet boundary conditions in a multiply connected domain Ω in ℝ2. Based on the delicate analysis about the distributions of connected components of the super-level sets {x ∈ Ω: u(x) > t} and sub-level sets {x ∈ Ω: u(x) < t} for some t, we obtain the geometric structure of interior critical point sets of u. Precisely, let Ω be a multiply connected domain with the interior boundary γI and the external boundary γE, where uγI = ψ1(x), uγE = ψ2(x). When ψ1(x) and ψ2(x) have N1 and N2 local maximal points on γI and γE respectively, we deduce that \(\sum\nolimits_{i = 1}^k {{m_i} \le {N_1} + {N_2}} \), where m1,…,mk are the respective multiplicities of interior critical points x1,…,xk of u. In addition, when \({\min _{{\gamma _E}}}{\psi _2}\left( x \right) \ge {\max _{{\gamma _I}}}{\psi _1}\left( x \right)\) and u has only N1 and N2 equal local maxima relative to \(\overline \Omega \) on γI and γe respectively, we develop a new method to show that one of the following three results holds \(\sum\nolimits_{i = 1}^k {{m_i} = {N_1} + {N_2}} \) or \(\sum\nolimits_{i = 1}^k {{m_i} + 1 = {N_1} + {N_2}} \) or \(\sum\nolimits_{i = 1}^k {{m_i} + 2 = {N_1} + {N_2}} \). Moreover, we investigate the geometric structure of interior critical zero points of u. We obtain that the sum of multiplicities of the interior critical zero points of u is less than or equal to the half of the number of its isolated zero points on the boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Alberti, G. Bal and M. Di Cristo, Critical points for elliptic equations with prescribed boundary conditions, Archive for Rational Mechanics and Analysis 226 (2017), 117–141.

    Article  MathSciNet  Google Scholar 

  2. G. Alessandrini, Critical points of solutions of elliptic equations in two variables, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 14 (1987), 229–256.

    MathSciNet  MATH  Google Scholar 

  3. G. Alessandrini and R. Magnanini, The index of isolated critical points and solutions of elliptic equations in the plane, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 19 (1992), 567–589.

    MathSciNet  MATH  Google Scholar 

  4. G. Alessandrini, D. Lupo and E. Rosset, Local behavior and geometric properties of solutions to degenerate quasilinear elliptic equations in the plane, Applicable Analysis 50 (1993), 191–215.

    Article  MathSciNet  Google Scholar 

  5. G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions, SIAM Journal on Mathematical Analysis 25 (1994), 1259–1268.

    Article  MathSciNet  Google Scholar 

  6. M. Badger, M. Engelstein and T. Toro, Structure of sets which are well approximated by zero sets of harmonic polynomials, Analysis & PDE 10 (2017), 1455–1495.

    Article  MathSciNet  Google Scholar 

  7. X. Cabré and S. Chanillo, Stable solutions of semilinear elliptic problems in convex domains, Selecta Mathematica 4 (1998), 1–10.

    Article  MathSciNet  Google Scholar 

  8. S. Cecchini and R. Magnanini, Critical points of solutions of degenerate elliptic equations in the plane, Calculus of Variations and Partial Differential Equations 39 (2010), 121–138.

    Article  MathSciNet  Google Scholar 

  9. J. Cheeger, A. Naber and D. Valtorta, Critical sets of elliptic equations, Communications on Pure and Applied Mathematics 68 (2015), 173–209.

    Article  MathSciNet  Google Scholar 

  10. J. T. Chen and W. H. Huang, Convexity of capillary surfaces in the outer space, Inventiones Mathematicae 67 (1982), 253–259.

    Article  MathSciNet  Google Scholar 

  11. F. De Regibus, M. Grossi and D. Mukherjee, Uniqueness of the critical point for semistable solutions in2, Calculus of Variations and Partial Differential Equations 60 (2021), Article no. 25.

  12. H. Y. Deng, H. R. Liu and L. Tian, Critical points of solutions for the mean curvature equation in strictly convex and nonconvex domains, Israel Journal of Mathematics 233 (2019), 311–333.

    Article  MathSciNet  Google Scholar 

  13. H. Y. Deng, H. R. Liu and L. Tian, Uniqueness of critical points of solutions to the mean curvature equation with Neumann and Robin boundary conditions, Journal of Mathematical Analysis and Applications 477 (2019), 1072–1086.

    Article  MathSciNet  Google Scholar 

  14. H. Y. Deng, H. R. Liu and L. Tian, Critical points of solutions to a quasilinear elliptic equation with nonhomogeneous Dirichlet boundary conditions, Journal of Differential Equations 265 (2018), 4133–4157.

    Article  MathSciNet  Google Scholar 

  15. H. Y. Deng, H. R. Liu and L. Tian, Classification of singular sets of solutions to elliptic equations, Communications on Pure and Applied Analysis 19 (2020), 2949–2964.

    Article  MathSciNet  Google Scholar 

  16. H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Inventiones Mathematicae 93 (1988), 161–183.

    Article  MathSciNet  Google Scholar 

  17. H. Donnelly and C. Fefferman, Nodal sets for eigenfunctions of the Laplacian on surfaces, Journal of the American Mathematical Society 31 (1990), 333–353.

    Article  MathSciNet  Google Scholar 

  18. A. Enciso and D. Peralta-Salas, Critical points and level sets in exterior boundary problems, Indiana University Mathematics Journal 58 (2009), 1947–1968.

    Article  MathSciNet  Google Scholar 

  19. A. Enciso and D. Peralta-Salas, Critical points of Green’s functions on complete manifolds, Journal of Differential Geometry 92 (2012), 1–29.

    Article  MathSciNet  Google Scholar 

  20. M. Grossi and P. Luo, On the number and location of critical points of solutions of nonlinear elliptic equations in domains with a small hole, https://arxiv.org/abs/2003.03643.

  21. Q. Han, R. Hardt and F.-H. Lin, Geometric measure of singular sets of elliptic equations, Communications on Pure and Applied Mathematics 51 (1998), 1425–1443.

    Article  MathSciNet  Google Scholar 

  22. R. Hardt, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and N. Nadirashvili, Critical sets of solutions to elliptic equations, Journal of Differential Geometry 51 (1999), 359–373.

    Article  MathSciNet  Google Scholar 

  23. P. Hartman and A. Wintner, On the local behavior of solutions of non-parabolic partial differential equations, American Journal of Mathematics 75 (1953), 449–476.

    Article  MathSciNet  Google Scholar 

  24. D. Kraus, Critical sets of bounded analytic functions, zero sets of Bergman spaces and nonpositive curvature, Proceedings of the London Mathematical Society 106 (2013), 931–956.

    Article  MathSciNet  Google Scholar 

  25. F. H. Lin, Nodal sets of solutions of elliptic and parabolic equations, Communications on Pure and Applied Mathematics 44 (1991), 287–308.

    Article  MathSciNet  Google Scholar 

  26. A. Logunov, Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure, Annals of Mathematics 187 (2018), 221–239.

    MathSciNet  MATH  Google Scholar 

  27. A. Logunov, Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture, Annals of Mathematics 187 (2018), 241–262.

    MathSciNet  MATH  Google Scholar 

  28. A. Logunov and E. Malinnikova, Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, in 50 Years With Hardy Spaces, Operator Theory: Advances and Applications, Vol. 261, Birkhäuser/Springer, Cham, 2018, pp. 333–344.

    Chapter  Google Scholar 

  29. A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Communications on Pure and Applied Mathematics 70 (2017), 1835–1897.

    Article  MathSciNet  Google Scholar 

  30. S. Sakaguchi, Uniqueness of critical point of the solution to some semilinear elliptic boundary value problem in2, Transactions of the American Mathematical Society 319 (1990), 179–190.

    MathSciNet  MATH  Google Scholar 

  31. S. Sakaguchi, Critical points of solutions to the obstacle problem in the plane, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 21 (1994), 157–173.

    MathSciNet  MATH  Google Scholar 

  32. L. Tian and X. P. Yang, Measure estimates of nodal sets of bi-harmonic functions, Journal of Differential Equations 256 (2014), 558–576.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the anonymous referees for the very careful reading and many very valuable suggestions which have helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyun Deng.

Additional information

The work is supported by National Natural Science Foundation of China (Nos. 12001276, 12001275, 12071219, 11971229).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Liu, H. & Yang, X. Critical points of solutions to a kind of linear elliptic equations in multiply connected domains. Isr. J. Math. 249, 935–971 (2022). https://doi.org/10.1007/s11856-022-2330-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2330-6

Navigation