Skip to main content
Log in

Mixing properties of generalized T,T−1 transformations

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

We study mixing properties of generalized T,T−1 transformations. We discuss two mixing mechanisms. In the case the fiber dynamics is mixing, it is sufficient that the driving cocycle is small with small probability. In the case the fiber dynamics is only assumed to be ergodic, one needs to use the shearing properties of the cocycle. Applications include the central limit theorem for sufficiently fast mixing systems and the estimates on deviations of ergodic averages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Araujo, O. Butterley and P. Varandas, Open sets of axiom A flows with exponentially mixing attractors, Proceedings of the American Mathematical Society 144 (2016), 2971–2984.

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Araujo and I. Melbourne, Exponential decay of correlations for nonuniformly hyperbolic flows with a C1+αstable foliation, including the classical Lorenz attractor, Annales Henri Poincaré 17 (2016), 2975–3004.

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Araujo and I. Melbourne, Mixing properties and statistical limit theorems for singular hyperbolic flows without a smooth stable foliation, Advances in Mathematics 349 (2019), 212–245.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. Bálint, O. Butterley and I. Melbourne, Polynomial decay of correlations for flows, including Lorentz gas examples, Communications in Mathematical Physics 368 (2019), 55–111.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Björklund, M. Einsiedler and A. Gorodnik, Quantitative multiple mixing, Journal of the European Mathematical Society 22 (2020), 1475–1529.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Björklund and A. Gorodnik, Central limit theorems for group actions which are exponentially mixing of all orders, Journal d’Analyse Mathématiques 141 (2020), 457–482.

    Article  MathSciNet  MATH  Google Scholar 

  7. E. Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries, Annals of Probability 17 (1989), 108–115.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. Bonatti, L. J. Diaz and M. Viana, Dynamics Beyond Uniform Hyperbolicity, Encyclopaedia of Mathematical Sciences, Vol. 102, Springer, Berlin, 2005.

    MATH  Google Scholar 

  9. R. Bowen, Equilibrium States and Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470, Springer, New York, 1975.

    Book  MATH  Google Scholar 

  10. E. Breuillard, Distributions diophantiennes et theoreme limite local surd, Probability Theory and Related Fields 132 (2005), 39–73.

    Article  MathSciNet  MATH  Google Scholar 

  11. N. I. Chernov, Limit theorems and Markov approximations for chaotic dynamical systems, Probability Theory and Related Fields 101 (1995), 321–362.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Chernov and R. Markarian, Chaotic Billiards, Mathematical Surveys and Monographs, Vol. 127, American Mathematical Society, Providence, RI, 2006.

    MATH  Google Scholar 

  13. G. Cohen and J.-P. Conze, The CLT for rotated ergodic sums and related processes, Discrete and Continuous Dynamical Systems. Series A 33 (2013), 3981–4002.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Cohen and J.-P. Conze, CLT for random walks of commuting endomorphisms on compact abelian groups, Journal of Theoretical Probability 30 (2017), 143–195.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Cosentino and L. Flaminio, Equidistribution for higher-rank abelian actions on Heisenberg nilmanifolds, Journal of Modern Dynamics 9 (2015), 305–353.

    Article  MathSciNet  MATH  Google Scholar 

  16. F. den Hollander, M. S. Keane, J. Serafin and J. E. Steif, Weak Bernoullicity of random walk in random scenery, Japanese Journal of Mathematics 29 (2003), 389–406.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. den Hollander and J. E. Steif, Mixing properties of the generalized T,T−1-process, Journal d’Analyse Mathématique 72 (1997), 165–202.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. den Hollander and J. E. Steif, Random walk in random scenery: a survey of some recent results, in Dynamics & stochastics, Institute of Mathematical Statistics Lecture Notes—Monograph Series, Vol. 48, Institute of Mathematical Statistics, Beachwood, OH, 2006, pp. 53–65.

    Chapter  Google Scholar 

  19. D. Dolgopyat, On decay of correlations in Anosov flows, Annals of Mathematics 147 (1998), 357–390.

    Article  MathSciNet  MATH  Google Scholar 

  20. D. Dolgopyat, Prevalence of rapid mixing in hyperbolic flows, Ergodic Theory and Dynamical Systems 18 (1998), 1097–1114.

    Article  MathSciNet  MATH  Google Scholar 

  21. D. Dolgopyat, On mixing properties of compact group extensions of hyperbolic systems, Israel Journal of Mathematics 130 (2002), 157–205.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Dolgopyat, Limit theorems for partially hyperbolic systems, Transactions of the American Mathematical Society 356 (2004), 1637–1689.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Dolgopyat, C. Dong, A. Kanigowski and P. Nándori, Flexibility of statistical properties for smooth systems satisfying the central limit theorem, https://arxiv.org/abs/2006.02191.

  24. D. Dolgopyat and B. Fayad, Limit theorems for toral translations, in Hyperbolic Dynamics, Fluctuations and Large Deviations, Proceedings of Symposia in Pure Mathematics, Vol. 89, American Mathematical Society, Providence, RI, 2015, pp. 227–277.

    Chapter  Google Scholar 

  25. D. Dolgopyat, M. Lenci and P. Nándori, Global observables for random walks: law of large numbers, Annales de l’Institut Henri Poincaré Probabilités et Statistiques 57 (2021), 94–115.

    Article  MathSciNet  MATH  Google Scholar 

  26. D. Dolgopyat and P. Nándori, Infinite measure renewal theorem and related results, Bulletin of the London Mathematical Society 51 (2019), 145–167.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Dolgopyat and P. Nándori, On mixing and the local central limit theorem for hyperbolic flows, Ergodic Theory and Dynamical Systems 40 (2020), 142–174.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Dolgopyat, P. Nándori and F. Pène, Asymptotic expansion of correlation functions fordcovers of hyperbolic flows, Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, to appear, https://arxiv.org/abs/1908.11504.

  29. M. Einsiedler and D. Lind, Algebraicdactions of entropy rank 1, Transactions of the American Mathematical Society 356 (2004), 1799–1831.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Fayad, G. Forni and A. Kanigowski, Lebesgue spectrum of countable multiplicity for conservative flows on the torus, Journal of the American Mathematical Society 34 (2021), 747–813.

    Article  MathSciNet  MATH  Google Scholar 

  31. K. Fernando and F. Pene, Expansions in the local and the central limit theorems for dynamical systems, Communications in Mathematical Physics, to appear, https://doi.org/10.1007/s00220-021-04255-z.

  32. M. Field, I. Melbourne and A. Török, Stability of mixing and rapid mixing for hyperbolic flows, Annals of Mathematics 166 (2007), 269–291.

    Article  MathSciNet  MATH  Google Scholar 

  33. L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke Mathematical Journal 119 (2003), 465–526.

    Article  MathSciNet  MATH  Google Scholar 

  34. L. Flaminio and G. Forni, Equidistribution of nilflows and applications to theta sums, Ergodic Theory and Dynamical Systems 26 (2006), 409–433.

    Article  MathSciNet  MATH  Google Scholar 

  35. G. Forni, Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Annals of Mathematics 155 (2002), 1–103.

    Article  MathSciNet  MATH  Google Scholar 

  36. G. Forni, Effective equidistribution of nilflows and bounds on Weyl sums, in Dynamics and Analytic Number Theory, London Mathematical Society Lecture Notes Series, Vol. 437, Cambridge University Press, Cambridge, 2016, pp. 136–188.

    Book  MATH  Google Scholar 

  37. G. Forni and A. Kanigowski, Time changes of Heisenberg nilflows, Asterisque 416 (2020), 253–299.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Gorodnik and R. Spatzier, Exponential mixing of nilmanifold automorphisms, Journal d’Analyse Mathématique 123 (2014), 355–396.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Gorodnik and R. Spatzier, Mixing properties of commuting nilmanifold automorphisms, Acta Mathematica 215 (2015), 127–159.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Gouëzel, Sharp polynomial estimates for the decay of correlations, Israel Journal of Mathematics 139 (2004), 29–65.

    Article  MathSciNet  MATH  Google Scholar 

  41. S. Gouëzel and I. Melbourne, Moment bounds and concentration inequalities for slowly mixing dynamical systems, Electronic Journal of Probability 19 (2014), Article no. 93.

  42. S. A. Kalikow, T,T−1transformation is not loosely Bernoulli, Annals of Mathematics 115 (1982), 393–409.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. Kanigowski, F. Rodriguez Hertz and K. Vinhage, On the non-equivalence of the Bernoulli and K properties in dimension four, Journal of Modern Dynamics 13 (2018), 221–250.

    Article  MathSciNet  MATH  Google Scholar 

  44. A. Katok, Smooth non-Bernoulli K-automorphisms, Inventiones Mathematicae 61 (1980), 291–299.

    Article  MathSciNet  MATH  Google Scholar 

  45. Y. Katznelson, Ergodic automorphisms of \({\mathbb{T}^n}\) are Bernoulli shifts, Israel Journal of Mathematics 10 (1971), 186–195.

    MathSciNet  MATH  Google Scholar 

  46. H. Kesten and F. Spitzer, A limit theorem related to a new class of self-similar processes, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete 50 (1979), 5–25.

    Article  MathSciNet  MATH  Google Scholar 

  47. D. Y. Kleinbock and G. A. Margulis, Logarithm laws for flows on homogeneous spaces, Inventiones Mathematicae 138 (1999), 451–494.

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Le Borgne, Exemples de systèmes dynamiques quasi-hyperboliques a decorrelations lentes, Comptes Rendus Mathématique. Académie des Sciences. Paris 343 (2006), 125–128.

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Liverani, On contact Anosov flows, Annals of Mathematics 159 (2004), 1275–1312.

    Article  MathSciNet  MATH  Google Scholar 

  50. B. Marcus and S. Newhouse, Measures of maximal entropy for a class of skew products, in Ergodic Theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978) Lecture Notes in Mathematics, Vol. 729, Springer, Berlin, 1979, pp. 105–125.

    Google Scholar 

  51. I. Melbourne, Large and moderate deviations for slowly mixing dynamical systems, Proceedings of the American Mathematical Society 137 (2009), 1735–1741.

    Article  MathSciNet  MATH  Google Scholar 

  52. I. Melbourne, Superpolynomial and polynomial mixing for semiflows and flows, Nonlinearity 31 (2018), R268–R316.

    Article  MathSciNet  MATH  Google Scholar 

  53. I. Melbourne and M. Nicol, Large deviations for nonuniformly hyperbolic systems, Transactions of the American Mathematical Society 360 (2008), 6661–6676.

    Article  MathSciNet  MATH  Google Scholar 

  54. W. Parry and M. Pollicott, Zeta Functions and Periodic Orbit Structure of Hyperbolic Dynamics, Asterisque 187–188 (1990).

  55. F. Pène, Planar Lorentz process in a random scenery, Annales de l’Institut Henri Poincaré Probabilités et Statistique 45 (2009), 818–839.

    Article  MathSciNet  MATH  Google Scholar 

  56. L. Rey–Bellet and L.-S. Young, Large deviations in non-uniformly hyperbolic dynamical systems, Ergodic Theory Dynamical Systems 28 (2008), 587–612.

    Article  MathSciNet  MATH  Google Scholar 

  57. D. Rudolph, Asymptotically Brownian skew products give non-loosely Bernoulli K-automorphisms, Inventiones Mathematicae 91 (1988), 105–128.

    Article  MathSciNet  MATH  Google Scholar 

  58. O. Sarig, Subexponential decay of correlations, Inventiones Mathematicae 150 (2002), 629–653.

    Article  MathSciNet  MATH  Google Scholar 

  59. D. Szász and T. Varjú, Local limit theorem for the Lorentz process and its recurrence in the plane, Ergodic Theory and Dynamical Systems 24 (2004), 257–278.

    Article  MathSciNet  MATH  Google Scholar 

  60. M. Tsujii, Exponential mixing for generic volume-preserving Anosov flows in dimension three, Journal of the Mathematical Society of Japan 70 (2018), 757–821.

    Article  MathSciNet  MATH  Google Scholar 

  61. L.-S. Young, Statistical properties of dynamical systems with some hyperbolicity, Annals of Mathematics 147 (1998), 585–650.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Dolgopyat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgopyat, D., Dong, C., Kanigowski, A. et al. Mixing properties of generalized T,T−1 transformations. Isr. J. Math. 247, 21–73 (2022). https://doi.org/10.1007/s11856-022-2289-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-022-2289-3

Navigation