Skip to main content
Log in

Rellich, Gagliardo—Nirenberg, Trudinger and Caffarelli—Kohn—Nirenberg inequalities for Dunkl operators and applications

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper we introduce several extended versions of the classical Caffarelli—Kohn—Nirenberg inequalities. Moreover, we obtain weighted higher order Rellich, weighted Gagliardo—Nirenberg, Caffarelli—Kohn—Nirenberg, Trudinger inequalities and the uncertainty principle for Dunkl operators. Furthermore, we give an application of the Gagliardo—Nirenberg inequality to the Cauchy problem for the nonlinear damped wave equations for the Dunkl Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. S. Adachi and K. Tanaka, Trudinger type inequalities innand their best exponents, Proceedings of the American Mathematical Society 128 (2000), 2051–2057.

    Article  MathSciNet  Google Scholar 

  2. J.-Ph. Anker, An introduction to Dunkl theory and its analytic aspects, in Analytic, Algebraic and Geometric Aspects of Differential Equations, Trends in Mathematics, Birkhauser/Springer, Cham, 2017, pp. 3–58.

    Chapter  Google Scholar 

  3. V. P. Anoop and S. Parui, The Hardy inequality and fractional Hardy inequality for the Dunkl Laplacian, Israel Journal of Mathematics 236 (2020), 247–278.

    Article  MathSciNet  Google Scholar 

  4. L. Caffarelli, R. Kohn and L. Nirenberg, First order interpolation inequalities with weights, Compositio Mathematica 53 (1984), 259–275.

    MathSciNet  MATH  Google Scholar 

  5. F. Dai and H. Wang, A transference theorem for the Dunkl transform and its applications, Journal of Functional Analysis 258 (2010), 4052–4074.

    Article  MathSciNet  Google Scholar 

  6. F. Dai and Y. Xu, Analysis on h-Harmonics and Dunkl Transforms, Advanced Courses in Mathematics, CRM Barcelona, Birkhäuser/Springer, Basel, 2015.

    Google Scholar 

  7. M. de Jeu, Paley-Wiener theorems for the Dunkl transform, Transactions of the American Mathematical Society 358 (2006), 4225–4250.

    Article  MathSciNet  Google Scholar 

  8. C. F. Dunkl, Differential-difference operators associated to reflection groups, Transactions of the American Mathematical Society 311 (1989), 167–183.

    Article  MathSciNet  Google Scholar 

  9. A. Fiorenza, M. R. Formica, T. Roskovec and F. Soudsky, Detailed proof of classical Gagliardo—Nirenberg interpolation inequality with historical remarks, Zeitschrift für Analysis und ihre Anwendungen 40 (2021), 217–236.

    Article  MathSciNet  Google Scholar 

  10. E. Gagliardo, Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche di Matematica 8 (1959), 24–51.

    MathSciNet  MATH  Google Scholar 

  11. V. Georgiev and A. Palmieri, Critical exponent of fujita-type for the semilinear damped wave equation on the heisenberg group with power nonlinearity, Journal Differential Equations 269 (2020), 420–448.

    Article  MathSciNet  Google Scholar 

  12. D. V. Gorbachev and V. I. Ivanov, Fractional smoothness in Lpwith Dunkl weight and its applications, Mathematical Notes 106 (2019), 537–561.

    Article  MathSciNet  Google Scholar 

  13. D. V. Gorbachev, V. I. Ivanov and S. Yu. Tikhonov, Positive Lp-bounded Dunkl-type generalized translation operator and its applications, Constructive Approximation 49 (2019), 555–605.

    Article  MathSciNet  Google Scholar 

  14. D. V. Gorbachev, V. I. Ivanov and S. Yu. Tikhonov, Riesz potential and maximal function for Dunkl transform, Potential Analysis 55 (2021), 513–538.

    Article  MathSciNet  Google Scholar 

  15. P. Graczyk, M. Rüsler and M. Yor (eds.), Harmonic and Stochastic Analysis of Dunkl Processes, Travaux en cours, Herman, Paris, 2008.

    MATH  Google Scholar 

  16. S. Hassani, S. Mustapha and M. Sifi, Riesz potentials and fractional maximal function for the Dunkl transform, Journal of Lie Theory 19 (2009), 725–734.

    MathSciNet  MATH  Google Scholar 

  17. H. Mejjaoli, Littlewood-Paley decomposition associated with the Dunkl operators and paraproduct operators, Journal of Inequalities in Pure and Applied Mathematics 9 (2008), Article no. 95.

  18. H. Mejjaoli, Generalized Lorentz spaces and applications, Journal of Function Spaces and Applications (2013), Article no. 302941.

  19. H. Mejjaoli, Generalized heat equation and applications, Integral Transforms and Special Functions 25 (2014), 15–33.

    Article  MathSciNet  Google Scholar 

  20. L. Nirenberg, On elliptic partial differential equations, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie III 13 (1959), 115–162.

    MathSciNet  MATH  Google Scholar 

  21. T. Ogawa, A proof of Trudinger’s inequality and its application to nonlinear Schrödinger equations, Nonlinear Analysis 14 (1990), 765–769.

    Article  MathSciNet  Google Scholar 

  22. T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem, Journal of Mathematical Analysis and Applications 155 (1991), 531–540.

    Article  MathSciNet  Google Scholar 

  23. T. Ozawa, On critical cases of Sobolev’s inequalities, Journal of Functional Analysis 127 (1995), 259–269.

    Article  MathSciNet  Google Scholar 

  24. M. Rösler, Dunkl operators: theory and applications, in Orthogonal Polynomials and Special Functions (Leuven, 2002), Lecture Notes in Mathematics, Vol. 1817, Springer, Berlin, 2003, pp. 93–135.

    Chapter  Google Scholar 

  25. M. Ruzhansky and D. Suragan, Hardy Inequalities on Homogeneous Groups, Progress in Mathematics, Vol. 327, Birkhäuser/Springer, Cham, 2019.

    Book  Google Scholar 

  26. M. Ruzhansky, D. Suragan and N. Yessirkegenov, Extended Caffarelli—Kohn—Nirenberg inequalities and superweights for Lp-weighted Hardy inequalities, Comptes Rendus Mathématique. Académie des Sciences. Paris 355 (2017), 694–698. MR 3661553.

    Article  MathSciNet  Google Scholar 

  27. M. Ruzhansky, D. Suragan and N. Yessirkegenov, Extended Caffarelli—Kohn—Nirenberg inequalities, and remainders, stability, and superweights for Lp-weighted Hardy inequalities, Transactions of the American Mathematical Society. Series B 5 (2018), 32–62.

    Article  MathSciNet  Google Scholar 

  28. M. Ruzhansky, D. Suragan and N. Yessirkegenov, Caffarelli—Kohn—Nirenberg and Sobolev type inequalities on stratified Lie groups, Nonlinear Differential Equations and Applications 24 (2017), Article no. 56.

  29. M. Ruzhansky and N. Tokmagambetov, Nonlinear damped wave equations for the sub-Laplacian on the Heisenberg group and for Rockland operators on graded Lie groups, Journal of Differential Equations 265 (2018), 5212–5236.

    Article  MathSciNet  Google Scholar 

  30. M. Ruzhansky, N. Tokmagambetov and N. Yessirkegenov, Best constants in Sobolev and Gagliardo—Nirenberg inequalities on graded groups and ground states for higher order nonlinear subelliptic equations, Calculus of Variations and Partial Differential Equations 59 (2020), Article no. 175.

  31. M. Ruzhansky and N. Yessirkegenov, Limiting cases of Sobolev inequalities on stratified groups, Japan Academy. Proceedings. Series A. Mathematical Sciences 95 (2019), 83–87.

    Article  MathSciNet  Google Scholar 

  32. M. Ruzhansky and N. Yessirkegenov, New progress on weighted Trudinger-Moser and Gagliardo—Nirenberg, and critical Hardy inequalities on stratified groups, in Landscapes of Time-Frequency Analysis, Applied and Numerical Harmonic Analysis, Birkhaäuser/Springer, Cham, 2019, pp. 277–289.

    Chapter  Google Scholar 

  33. S. Thangavelu and Y. Xu, Convolution operator and maximal function for the Dunkl transform, Journal d’Analyse Mathématique 97 (2005), 25–55.

    Article  MathSciNet  Google Scholar 

  34. S. Thangavelu and Y. Xu, Riesz transform and Riesz potentials for Dunkl transform, Journal of Computational and Applied Mathematics 199 (2007), 181–195.

    Article  MathSciNet  Google Scholar 

  35. J. F. van Diejen and L. Vinet (eds.), Calogero-Moser-Sutherland Models, CRM Series in Mathematical Physics, Springer, New York, 2000.

    MATH  Google Scholar 

  36. A. Velicu, Hardy-type inequalities for Dunkl operators with applications to many-particle Hardy inequalities, Communications in Contemporary Mathematics 23 (2021), Article no. 2050024.

  37. A. Velicu, Sobolev-type inequalities for Dunkl operators, Journal of Functional Analysis 279 (2020), Article no. 108695.

Download references

Acknowledgements

The authors wish to thank Michael Ruzhansky for introducing them to several of the problems studied in this paper and for useful advice, and also Sergey Tikhonov and Hatem Mejjaoli for pointing out missing references. The first author gratefully acknowledges financial support from EPSRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Velicu.

Additional information

The second author was supported by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant No. AP09058474) and by the FWO Odysseus 1 grant G.0H94.18N: Analysis and Partial Differential Equations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velicu, A., Yessirkegenov, N. Rellich, Gagliardo—Nirenberg, Trudinger and Caffarelli—Kohn—Nirenberg inequalities for Dunkl operators and applications. Isr. J. Math. 247, 741–782 (2022). https://doi.org/10.1007/s11856-021-2261-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2261-7

Navigation