Skip to main content
Log in

Highness properties close to PA completeness

  • Published:
Israel Journal of Mathematics Aims and scope Submit manuscript

Abstract

Suppose we are given a computably enumerable object. We are interested in the strength of oracles that can compute an object that approximates this c.e. object. It turns out that in many cases arising from algorithmic randomness or computable analysis, the resulting highness property is either close to, or equivalent to being PA complete. We examine, for example, majorizing a c.e. martingale by an oracle-computable martingale, computing lower bounds for two variants of Kolmogorov complexity, and computing a subtree of positive measure with no dead-ends of a given \(\prod _1^0\) tree of positive measure. We separate PA completeness from the latter property, called the continuous covering property. We also separate the corresponding principles in reverse mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Barmpalias, A. E. M. Lewis and K. M. Ng, The importance of \(\prod _1^0\) classes in effective randomness, Journal of Symbolic Logic 75 (2010), 387–400.

    Article  MathSciNet  Google Scholar 

  2. L. Bienvenu, N. Greenberg, A. Kučera, A. Nies and D. Turetsky, Coherent randomness tests and computing the K-trivial sets, Journal of the European Mathematical Society 18 (2016), 773–812.

    Article  MathSciNet  Google Scholar 

  3. L. Bienvenu and J. S. Miller, Randomness and lowness notions via open covers, Annals of Pure and Applied Logic 163 (2012), 506–518.

    Article  MathSciNet  Google Scholar 

  4. L. Bienvenu and C. P. Porter, Deep \(\prod _1^0\) classes, Bulletin of Symbolic Logic 22 (2016), 249–286.

    Article  MathSciNet  Google Scholar 

  5. V. Brattka, Computability and analysis, a historical approach, in Pursuit of the Universal, Lecture Notes in Computer Science, Vol. 9709, Springer, Cham, 2016, pp. 45–57.

    Chapter  Google Scholar 

  6. V. Brattka, G. Gherardi and A. Pauly, Weihrauch complexity in computable analysis, in Handbook of Computability and Complexity in Analysis, Theory and Applications of Computability, Springer, Cham, 20201, pp. 367–417.

  7. V. Brattka, J. S. Miller and A. Nies, Randomness and differentiability, Transactions of the American Mathematical Society 368 (2016), 581–605.

    Article  MathSciNet  Google Scholar 

  8. C. T. Chong, W. Li, W. Wang and Y. Yang, On the computability of perfect subsets of sets with positive measure, Proceedings of the American Mathematical Society 147 (2019), 4021–4028.

    Article  MathSciNet  Google Scholar 

  9. O. Demuth, The differentiability of constructive functions of weakly bounded variation on pseudo numbers, Commentationes Mathematicae Universitatis Carolinae 16 (1975), 583–599.

    MathSciNet  Google Scholar 

  10. F. G. Dorais, D. D. Dzhafarov, J. L. Hirst J. R. Mileti and P. Shafer, On uniform relationships between combinatorial problems, Transactions of the American Mathematical Society 368 (2016), 1321–1359.

    Article  MathSciNet  Google Scholar 

  11. R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity, Springer, Berlin, 2010.

    Book  Google Scholar 

  12. J. N. Y. Franklin, F. Stephan and L. Yu, Relativizations of randomness and genericity notions, Bulletin of the London Mathematical Society 43 (2011), 721–733.

    Article  MathSciNet  Google Scholar 

  13. C. Freer, B. Kjos-Hanssen, A. Nies and F. Stephan, Algorithmic aspects of Lipschitz functions, Computability 3 (2014), 45–61.

    Article  MathSciNet  Google Scholar 

  14. N. Greenberg, R. Kuyper and D. Turetsky, Cardinal invariants, non-lowness classes, and Weihrauch reducibility, Computability 8 (2019), 305–346.

    Article  MathSciNet  Google Scholar 

  15. N. Greenberg and J. S. Miller, Diagonally non-recursive functions and effective Hausdorff dimension, Bulletin of the London Mathematical Society 43 (2011), 636–654.

    Article  MathSciNet  Google Scholar 

  16. K. Higuchi, W. M. P. Hudelson, S. G. Simpson and K. Yokoyama, Propagation of partial randomness, Annals of Pure and Applied Logic 165 (2014), 742–758.

    Article  MathSciNet  Google Scholar 

  17. P. G. Hinman, A survey of Mučnik and Medvedev degrees, Bulletin of Symbolic Logic 18 (2012), 161–229.

    Article  MathSciNet  Google Scholar 

  18. C. G. Jockusch, Jr., Degrees of functions with no fixed points, in Logic, Methodology and Philosophy of Science, VIII (Moscow, 1987), Studies in Logic and the Foundations of Mathematics, Vol. 126, North-Holland, Amsterdam, 1989, pp. 191–201.

    Google Scholar 

  19. C. G. Jockusch, Jr. and R. I. Soare, \(\prod _1^0\) classes and degrees of theories, Transactions of the American Mathematical Society 173 (1972), 33–56.

    MathSciNet  MATH  Google Scholar 

  20. M. Khan and J. S. Miller, Forcing with bushy trees, Bulletin of Symbolic Logic 23 (2017), 160–180.

    Article  MathSciNet  Google Scholar 

  21. B. Kjos-Hanssen, W. Merkle and F. Stephan, Kolmogorov complexity and the recursion theorem, Transactions of the American Mathematical Society 363 (2011), 5465–5480.

    Article  MathSciNet  Google Scholar 

  22. B. Kjos-Hanssen, A. Nies and F. Stephan, Lowness for the class of Schnorr random reals, SIAM Journal on Computing 35 (2005), 647–657.

    Article  MathSciNet  Google Scholar 

  23. A. Kučera, Measure, \(\prod _1^0\)-classes and complete extensions of PA, in Recursion Theory Week (Oberwolfach, 1984), Lecture Notes in Mathematics, Vol. 1141, Springer, Berlin, 1985, pp. 245–259.

    Chapter  Google Scholar 

  24. Yu. T. Medvedev, Degrees of difficulty of the mass problem, Doklady Akademii Nauk SSSR 104 (1955), 501–504.

    MathSciNet  MATH  Google Scholar 

  25. J. S. Miller, Degrees of unsolvability of continuous functions, Journal of Symbolic Logic 69 (2004), 555–584.

    Article  MathSciNet  Google Scholar 

  26. A. A. Mučnik, On strong and weak reducibility of algorithmic problems, Sibirskiĭ Matematičeskiĭ Žurnal 4 (1963), 1328–1341.

    MathSciNet  Google Scholar 

  27. A. Nies, Computability and Randomness, Oxford Logic Guides, Vol. 51, Oxford University Press, Oxford, 2009.

    Book  Google Scholar 

  28. A. Nies, F. Stephan and S. A. Terwijn, Randomness, relativization and Turing degrees, Journal of Symbolic Logic 70 (2005), 515–535.

    Article  MathSciNet  Google Scholar 

  29. N. Rupprecht, Effective correspondents to cardinal characteristics in cichoń’s diagram, Ph.D. thesis, University of Michigan, 2010.

  30. C. P. Schnorr, Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie, Lecture Notes in Mathematics, Vol. 218, Springer, Berlin, 1971.

    MATH  Google Scholar 

  31. S. G. Simpson, Mass problems and randomness, Bulletin of Symbolic Logic 11 (2005), 1–27.

    Article  MathSciNet  Google Scholar 

  32. S. G. Simpson, Subsystems of Second Order Arithmetic, Perspectives in Logic, Cambridge University Press, Cambridge; Association for Symbolic Logic, Poughkeepsie, New York, 2009.

    Google Scholar 

  33. S. G. Simpson, Turing degrees and Muchnik degrees of recursively bounded DNR functions, in Computability and Complexity, Lecture Notes in Computer Science, Vol. 10010, Springer, Cham, 2017, pp. 660–668.

    Chapter  Google Scholar 

  34. S. G. Simpson and F. Stephan, Cone avoidance and randomness preservation, Annals of Pure and Applied Logic 166 (2015), 713–728.

    Article  MathSciNet  Google Scholar 

  35. A. Sorbi, The Medvedev lattice of degrees of difficulty, in Computability, Enumerability, Unsolvability, London Mathematical Society Lecture Note Series, Vol. 224, Cambridge University Press, Cambridge, 1996, pp. 289–312.

    Chapter  Google Scholar 

  36. F. Stephan, Martin-Löf random and PA-complete sets, in Logic Colloquium’ 02, Lecture Notes in Logic, Vol. 27, Association for Symbolic Logic, La Jolla, CA, 2006, pp. 342–348.

    Google Scholar 

  37. P. Vojtáš, Topological cardinal invariants and the Galois-Tukey category, in Recent Developments of General Topology and its Applications (Berlin, 1992), Mathematical Research, Vol. 67, Akademie, Berlin, 1992, pp. 309–314.

    MATH  Google Scholar 

  38. K. Weihrauch, Computable Analysis, Texts in Theoretical Computer Science. An EATCS Series, Springer, Berlin, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noam Greenberg.

Additional information

The research in this paper was commenced when the authors participated in the Buenos Aires Semester in Computability, Complexity and Randomness, 2013. Greenberg and Nies were partially supported by a Marsden grant of the Royal Society of New Zealand. Miller was initially supported by the National Science Foundation under grant DMS-1001847; he is currently supported by grant #358043 from the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenberg, N., Miller, J.S. & Nies, A. Highness properties close to PA completeness. Isr. J. Math. 244, 419–465 (2021). https://doi.org/10.1007/s11856-021-2200-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11856-021-2200-7

Navigation